1 research outputs found

    Implementaci贸n de un algoritmo para eliminaci贸n de ruido impulsivo en im谩genes y an谩lisis comparativo de tiempos de respuesta bajo arquitectura GPU y CPU

    Get PDF
    El presente trabajo, tuvo como prop贸sito general determinar en procesamiento digital de im谩genes, tiempos de respuesta al implementar un algoritmo en diferentes arquitecturas (CPU Y GPU), utilizando interpolaci贸n a trav茅s de funciones de base radial. Para cumplir con este objetivo, se parte de una investigaci贸n previa sobre eliminaci贸n de ruido impulsivo en im谩genes, a partir de all铆 se plantea en base a una soluci贸n en pseudoc贸digo un algoritmo apropiado para la arquitectura CPU y arquitectura GPU. Sobre la arquitectura GPU se detallan las particularidades identificadas al momento de la implementaci贸n (utilizando tecnolog铆a CUDA); restricciones sobre de la plataforma y alternativas de implementaci贸n. Consecuente a la implementaci贸n, se plantea un conjunto de pruebas con im谩genes, las cuales tienen ruido del tipo sal y pimienta y de diferentes dimensiones (ancho, alto), estas pruebas buscan determinar los tiempos de respuesta en cuanto a eliminaci贸n de ruido por parte del algoritmo implementado en las dos arquitecturas. Las pruebas en tiempos de respuesta generan resultados que son analizados, principalmente evidenciando una correcta eliminaci贸n de los pixeles ruidosos (que alcanzan los 55 mil en una sola imagen) en el caso de las dos arquitecturas, y adicionalmente el tiempo de respuesta claramente bajo (mayor rapidez en procesamiento) en la arquitectura CPU con respecto a la arquitectura GPU.The research had as a primary objective determine in the field of digital processing images, response times in different architectures (CPU and GPU), using interpolation trough the basis radial functions. To achieve this objective, it start with a previous research about impulsive noise elimination in images, from there its proposed an appropiate algorithm based in a pseudocode solution, to the CPU architecture and GPU architecture. For the GPU architecture is detailed several particularities identified at the implementation phase (using CUDA technology); platform restrictions and implementation work-arounds. As a result of the implementation phase, its proposed a test images, which have noise salt and pepper with different dimensions (width, height), these tests seek to determine response times about noise elimination by the algorithm implemented on the two architectures. In testing the results were analyzed, mainly showing a correct noise elimination in images (reaching up to 55 thousand noisy pixels in a image) at both CPU and GPU architectures, additionally a clearly lower response time (faster in processing) on the CPU Architecture regarding to the GPU Architecture
    corecore