99 research outputs found
Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops
Bt-transformed maize contains genes from Bacillus thuringiensis encoding for insecticidal crystal proteins. Less insect damage on Bt maize stalks can cause a reduced infection by Fusarium species through plant injuries. This could affect the presence of plant-pathogenic Fusarium species on maize residues which serve as an inoculum source for subsequent crops. We collected overwintered maize stalks of four different Bt maize hybrids and their corresponding non-Bt lines in two consecutive years in a field trial in Germany. Fusarium spp. were isolated from 67% of 648 collected maize stalks. Identification with new multiplex PCR assays showed that F. graminearum, F. avenaceum, and F. proliferatum were the most abundant Fusarium species, isolated from 42%, 26%, and 15% of the stalks, respectively. Species abundances varied between varieties and collection years. No consistent difference was found between Bt and non-Bt stalks. Fusariumgraminearum isolates were subject to a population genetic structure analysis with eight newly developed microsatellites. Significant association of loci and overrepresentation of repeated multilocus haplotypes indicated a substantial asexual component of reproduction, supporting selection of haplotypes. The data suggested selection of particular F. graminearum haplotypes by collection years but not by maize Bt transformation. Haplotypic changes between years caused no divergence in the distribution of alleles, suggesting that gene flow beyond the field scale prevented substructuring. We present evidence for gene flow between our saprophytic F.graminearum population on maize residues and a wheat-pathogenic population from a field 100km distan
Inheritance of Naphthazarin Production and Pathogenicity to Pea in Nectria haematococca
A naphthazarin-producing (fusarubin, novarubin, javanicin, norjavanicin), highly pathogenic strain of Nectria haematococca (sexual state of Fusarium solani var. martii) was crossed with a non-naphthazarin-producing, slightly pathogenic mutant strain. This cross and several backcrosses were studied by unordered tetrad analysis. In all tetrads a 4: 4 ratio of naphthazarin-producing ascospore strains to non-naphthazarin-producing ones resulted. By two-factor analysis for this character and the markers determining mating type, sexual type, colonial growth, and perithecial colour respectively, parental-ditype, non-parental-ditype, and tetratype tetrads resulted. This indicates that the loss of the capacity to produce naphthazarins is due to a mutation at a single locus, which probably blocks the biosynthesis of a polyketide precursor. When the same tetrads were tested for pathogenicity, the strains could not be classified into a group with high pathogenicity and one with low pathogenicity, as they showed intermediate degrees of pathogenicity. It is therefore concluded that the degree of pathogenicity is polygenically inherited. The difference in the inheritance of the capacity to produce naphthazarins and of pathogenicity, as well as the appearance of highly pathogenic though non-naphthazarin-producing segregants, indicates that the capacity to produce novarubin, fusarubin, javanicin, and norjavanicin is not a major factor in the determination of a high degree of pathogenicit
The effect of vineyard long-term monoculture soil on production of volatile compounds and photosynthetic apparatus in grapevine leaves
The effect of soil collected from long-term (1007 years of duration of monoculture) and short-term (55 years) grapevine monoculture on production of volatile organic compounds (VOC’s) and on functional parameters of photosystem II in grapevine leaves was analyzed. Grapevine plantlets grown in tested soils showed differences in VOC’s production after five months cultivation. Chlorophyll a fluorescence measurements by JIP-test revealed that the photosystem II was less efficient but the fluorescence intensity increased in plant growing in soil from the long-term monoculture compared to plants growing in the short term monoculture soil. Pseudomonas spp. carrying the biocontrol genes phlD and hcnAB were isolated from long-term monoculture soil. A consortium of ten of these isolates was added to the short term monoculture soil. The plants grown in this inoculated soil showed similar changes in fluorescence intensity and photosystem efficacy as the plants growing in long term monoculture. In this study, simple tools for measurement of a “soil effect” by measuring only a leaf have been tested successfully. They have allowed exhibiting the influence of long-term monoculture on plant physiology.
Potential environmental fate of elsinochrome A, a perylenequinone toxin produced in culture by bindweed biocontrol fungus Stagonospora convolvuli LA39
The photosensitizing perylenequinone toxin elsinochrome A (EA) is produced in culture by the bindweed biocontrol fungus Stagonospora convolvuli LA39 where it apparently plays a pathogenicity related role. We investigated the fate of EA with reference to its stability under different temperature and light conditions. EA remained stable when boiled in water at 100°C for 2 h. Similarly, exposing EA to 3-27°C in the dark for up to 16 weeks did not affect its stability either in dry or in aqueous form. However, results from irradiation experiments indicate that direct photolysis may be a significant degradation pathway for EA in the environment. EA either in dry form or dissolved in water was degraded by different irradiation wavelengths and intensities, with degradation plots fitting a first order rate kinetics. EA degraded faster if exposed in aqueous form, and at higher quantum flux density (μmol s−1 m−2). Sunlight was more effective in degrading EA than artificial white light and ultraviolet radiations (UV-A or UV-B). Exposing EA to natural sunlight, particularly, during the intense sunshine (1,420-1,640 μmol −1 m−2) days of 30 July to 5 August 2004 in Zurich caused the substance to degrade rapidly with half-life under such condition only 14 h. This implies that should EA gets into the environment, particularly on exposed environmental niches, such as on plant surfaces through biocontrol product spray, or released from shed diseased leaves, it may have no chance of accumulating to ‘level of concern'. Furthermore, a toxicity assay using Trichoderma atroviride P1 as biosensor showed that photo-degraded EA was not toxic, indicating that no stable toxic by-products were lef
Rendezvous of Two Robots with Constant Memory
We study the impact that persistent memory has on the classical rendezvous
problem of two mobile computational entities, called robots, in the plane. It
is well known that, without additional assumptions, rendezvous is impossible if
the entities are oblivious (i.e., have no persistent memory) even if the system
is semi-synchronous (SSynch). It has been recently shown that rendezvous is
possible even if the system is asynchronous (ASynch) if each robot is endowed
with O(1) bits of persistent memory, can transmit O(1) bits in each cycle, and
can remember (i.e., can persistently store) the last received transmission.
This setting is overly powerful.
In this paper we weaken that setting in two different ways: (1) by
maintaining the O(1) bits of persistent memory but removing the communication
capabilities; and (2) by maintaining the O(1) transmission capability and the
ability to remember the last received transmission, but removing the ability of
an agent to remember its previous activities. We call the former setting
finite-state (FState) and the latter finite-communication (FComm). Note that,
even though its use is very different, in both settings, the amount of
persistent memory of a robot is constant.
We investigate the rendezvous problem in these two weaker settings. We model
both settings as a system of robots endowed with visible lights: in FState, a
robot can only see its own light, while in FComm a robot can only see the other
robot's light. We prove, among other things, that finite-state robots can
rendezvous in SSynch, and that finite-communication robots are able to
rendezvous even in ASynch. All proofs are constructive: in each setting, we
present a protocol that allows the two robots to rendezvous in finite time.Comment: 18 pages, 3 figure
Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin
Fluorescent Pseudomonas strains producing the antimicrobial secondary metabolite 2,4-diacetylphloroglucinol (Phl) play a prominent role in the biocontrol of plant diseases. A subset of Phl-producing fluorescent Pseudomonas strains, which can additionally synthesize the antimicrobial compound pyoluteorin (Plt), appears to cluster separately from other fluorescent Pseudomonas spp. based on 16S rRNA gene analysis and shares at most 98.4% 16S rRNA gene sequence identity with any other Pseudomonas species. In this study, a polyphasic approach based on molecular and phenotypic methods was used to clarify the taxonomy of representative Phl+ Plt+ strains isolated from tobacco, cotton or wheat on different continents. Phl+ Plt+ strains clustered separately from their nearest phylogenetic neighbors (i.e. species from the ‘P. syringae’, ‘P. fluorescens’ and ‘P. chlororaphis’ species complexes) based on rpoB, rpoD or gyrB phylogenies. DNA-DNA hybridization experiments clarified that Phl+ Plt+ strains formed a tight genomospecies that was distinct from P. syringae, P. fluorescens, or P. chlororaphis type strains. Within Phl+ strains, the Phl+ Plt+ strains were differentiated from other biocontrol fluorescent Pseudomonas strains that produced Phl but not Plt, based on phenotypic and molecular data. Discriminative phenotypic characters were also identified by numerical taxonomic analysis and siderotyping. Altogether, this polyphasic approach supported the conclusion that Phl+ Plt+ fluorescent Pseudomonas strains belonged to a novel species for which the name Pseudomonas protegens is proposed, with CHA0T (=CFBP 6595T, =DSM 19095T) as the type strain
Improving the benefits of multicast prioritization algorithms
The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-014-1087-zPrioritized atomic multicast consists in delivering messages in total order
while ensuring that the priorities of the messages are considered; i.e., messages with
higher priorities are delivered first. That service can be used in multiple applications.
An example is the usage of prioritization algorithms for reducing the transaction abort
rates in applications that use a replicated database system. To this end, transaction
messages get priorities according to their probability of violating the existing integrity
constraints. This paper evaluates how that abort reduction may be improved varying
the message sending rate and the bounds set on the length of the priority reordering
queue being used by those multicast algorithms.This work has been partially supported by EU FEDER and Spanish MICINN under research Grants TIN2009-14460-C03-01 and TIN2010-17193.Miedes De Elías, EP.; Muñoz Escoí, FD. (2014). Improving the benefits of multicast prioritization algorithms. Journal of Supercomputing. 68(3):1280-1301. doi:10.1007/s11227-014-1087-zS12801301683Amir Y, Danilov C, Stanton JR (2000) A low latency, loss tolerant architecture and protocol for wide area group communication. In: International Conference on Dependable Systems and Networks (DSN), IEEE-CS, Washington, DC, USA, pp 327–336Chockler G, Keidar I, Vitenberg R (2001) Group communication specifications: a comprehensive study. ACM Comput Surv 33(4):427–469CiA (2001) About CAN in Automation (CiA). http://www.can-cia.org/index.php?id=aboutciaDéfago X, Schiper A, Urbán P (2004) Total order broadcast and multicast algorithms: taxonomy and survey. ACM Comput Surv 36(4):372–421Dolev D, Dwork C, Stockmeyer L (1987) On the minimal synchronism needed for distributed consensus. J ACM 34(1):77–97International Organization for Standardization (ISO) (1993) Road vehicles—interchange of digital information—controller area network (CAN) for high-speed communication. Revised by ISO 11898-1:2003JBoss (2011) The Netty project 3.2 user guide. http://docs.jboss.org/netty/3.2/guide/html/Kaashoek MF, Tanenbaum AS (1996) An evaluation of the Amoeba group communication system. In: International conference on distributed computing system (ICDCS), IEEE-CS, Washington, DC, USA, pp 436–448Miedes E, Muñoz-Escoí FD (2008) Managing priorities in atomic multicast protocols. In: International conference on availability, reliability and security (ARES), Barcelona, Spain, pp 514–519Miedes E, Muñoz-Escoí FD (2010) Dynamic switching of total-order broadcast protocols. In: International conference on parallel and distributed processing techniques and applications (PDPTA), CSREA Press, Las Vegas, Nevada, USA, pp 457–463Miedes E, Muñoz-Escoí FD, Decker H (2008) Reducing transaction abort rates with prioritized atomic multicast protocols. In: International European conference on parallel and distributed computing (Euro-Par), Springer, Las Palmas de Gran Canaria, Spain, Lecture notes in computer science, vol 5168, pp 394–403Mocito J, Rodrigues L (2006) Run-time switching between total order algorithms. In: International European conference on parallel and distributed computing (Euro-Par), Springer, Dresden, Germany, Lecture Notes in Computer Science, vol 4128, pp 582–591Moser LE, Melliar-Smith PM, Agarwal DA, Budhia R, Lingley-Papadopoulos C (1996) Totem: a fault-tolerant multicast group communication system. Commun ACM 39(4):54–63Nakamura A, Takizawa M (1992) Priority-based total and semi-total ordering broadcast protocols. In: International conference on distributed computing systems (ICDCS), Yokohama, Japan, pp 178–185Nakamura A, Takizawa M (1993) Starvation-prevented priority based total ordering broadcast protocol on high-speed single channel network. In: 2nd International symposium on high performance distributed computing (HPDC), pp 281–288Rodrigues L, Veríssimo P, Casimiro A (1995) Priority-based totally ordered multicast. In: Workshop on algorithms and architectures for real-time control (AARTC), Ostend, BelgiumRütti O, Wojciechowski P, Schiper A (2006) Structural and algorithmic issues of dynamic protocol update. In: 20th International parallel and distributed processing symposium (IPDPS), IEEE-CS Press, Rhodes Island, GreeceTindell K, Clark J (1994) Holistic schedulability analysis for distributed hard real-time systems. Microprocess Microprogr 40(2–3):117–134Tully A, Shrivastava SK (1990) Preventing state divergence in replicated distributed programs. In: International symposium on reliable distributed systems (SRDS), Huntsville, Alabama, USA, pp 104–113Wiesmann M, Schiper A (2005) Comparison of database replication techniques based on total order broadcast. IEEE Trans Knowl Data Eng 17(4):551–56
Byzantine Gathering in Networks
This paper investigates an open problem introduced in [14]. Two or more
mobile agents start from different nodes of a network and have to accomplish
the task of gathering which consists in getting all together at the same node
at the same time. An adversary chooses the initial nodes of the agents and
assigns a different positive integer (called label) to each of them. Initially,
each agent knows its label but does not know the labels of the other agents or
their positions relative to its own. Agents move in synchronous rounds and can
communicate with each other only when located at the same node. Up to f of the
agents are Byzantine. A Byzantine agent can choose an arbitrary port when it
moves, can convey arbitrary information to other agents and can change its
label in every round, in particular by forging the label of another agent or by
creating a completely new one.
What is the minimum number M of good agents that guarantees deterministic
gathering of all of them, with termination?
We provide exact answers to this open problem by considering the case when
the agents initially know the size of the network and the case when they do
not. In the former case, we prove M=f+1 while in the latter, we prove M=f+2.
More precisely, for networks of known size, we design a deterministic algorithm
gathering all good agents in any network provided that the number of good
agents is at least f+1. For networks of unknown size, we also design a
deterministic algorithm ensuring the gathering of all good agents in any
network but provided that the number of good agents is at least f+2. Both of
our algorithms are optimal in terms of required number of good agents, as each
of them perfectly matches the respective lower bound on M shown in [14], which
is of f+1 when the size of the network is known and of f+2 when it is unknown
Rendezvous on a Line by Location-Aware Robots Despite the Presence of Byzantine Faults
A set of mobile robots is placed at points of an infinite line. The robots
are equipped with GPS devices and they may communicate their positions on the
line to a central authority. The collection contains an unknown subset of
"spies", i.e., byzantine robots, which are indistinguishable from the
non-faulty ones. The set of the non-faulty robots need to rendezvous in the
shortest possible time in order to perform some task, while the byzantine
robots may try to delay their rendezvous for as long as possible. The problem
facing a central authority is to determine trajectories for all robots so as to
minimize the time until the non-faulty robots have rendezvoused. The
trajectories must be determined without knowledge of which robots are faulty.
Our goal is to minimize the competitive ratio between the time required to
achieve the first rendezvous of the non-faulty robots and the time required for
such a rendezvous to occur under the assumption that the faulty robots are
known at the start. We provide a bounded competitive ratio algorithm, where the
central authority is informed only of the set of initial robot positions,
without knowing which ones or how many of them are faulty. When an upper bound
on the number of byzantine robots is known to the central authority, we provide
algorithms with better competitive ratios. In some instances we are able to
show these algorithms are optimal
Towards the biocontrol of bindweeds with a mycoherbicide
Within the framework of the European COST Action 816, afive-year collaboration between scientists from five Europeancountries has made an important contribution to biologicalcontrol of field and hedge bindweeds (Convolvulus arvensis andCalystegia sepium, respectively). A fungus Stagonosporaconvolvuli strain LA39, able to infect both field and hedgebindweed, was found in the UK and its biocontrol efficacyimproved by optimising mass production, formulation and storagetechniques. This fungus controlled bindweeds in both a cemeteryand in maize crops. Its use fits best in an integrated pestmanagement system where a green cover controls most of the weedsexcept the bindweeds. DNA marker analyses indicate that thefungus reproduces sexually, which could be used to furtherimprove this mycoherbicide. In addition, the insect Melanagromyzaalbocilia, which itself exhibits biocontrol potential againstbindweeds, may be used in combination with LA39 to improve theability of the fungus to penetrate the stem of bindweeds.Overall, the results suggest that S. convolvuli LA39 haspromising potential as a bioherbicide for control of field andhedge bindwee
- …