2 research outputs found

    Benchmarking seasonal forecasting skill using river flow persistence in Irish catchments

    No full text
    This study assesses the seasonal forecast skill of river flow persistence in 46 catchments representing a range of hydrogeological conditions across Ireland. Skill is evaluated against a climatology benchmark forecast and by examining correlations between predicted and observed flow anomalies. Forecasts perform best when initialised in drier summer months, 87% of which show greater skill relative to the benchmark at a 1-month horizon. Such skill declines as forecast horizon increases due to the longer time a catchment has to “forget” initial anomalous flow conditions and/or to be impacted by “new” events. Skill is related to physical catchment descriptors such as the Baseflow Index (correlation ρ= 0.86) and is greatest in permeable high-storage catchments. The distinct seasonal and spatial variations in persistence skill allows us to pinpoint when and where this method can provide a useful benchmark in the future development of more complex seasonal hydrological forecasting approaches in Ireland. </div

    Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times

    No full text
    Skilful hydrological forecasts can benefit decision-making in water resources management and other water-related sectors that require long-term planning. In Ireland, no such service exists to deliver forecasts at the catchment scale. In order to understand the potential for hydrological forecasting in Ireland, we benchmark the skill of Ensemble Streamflow Prediction (ESP) for a diverse sample of 46 catchments using the GR4J hydrological model. Skill is evaluated within a 52-year hindcast study design over lead times of 1 day to 12 months for each of 12 initialisation months, January to December. Our results show that ESP is skilful against a probabilistic climatology benchmark in the majority of catchments up to several months ahead. However, the level of skill was strongly dependent on lead time, initialisation month, and individual catchment location and storage properties. Mean ESP skill was found to decay rapidly as a function of lead time, with continuous ranked probability skill scores (CRPSS) of 0.8 (1 day), 0.32 (2-week), 0.18 (1-month), 0.05 (3-month), and 0.01 (12-month). Forecasts were generally more skilful when initialised in summer than other seasons. A strong correlation (ρ = 0.94) was observed between forecast skill and catchment storage capacity (baseflow index), with the most skilful regions, the Midlands and East, being those where slowly responding, high storage catchments are located. Forecast reliability and discrimination were also assessed with respect to low and high flow events. In addition to our benchmarking experiment, we conditioned ESP with the winter North Atlantic Oscillation (NAO) using adjusted hindcasts from the Met Office’s Global Seasonal Forecasting System version 5. We found gains in winter forecast skill (CRPSS) of 7–18% were possible over lead times of 1 to 3 months, and that improved reliability and discrimination make NAO-conditioned ESP particularly effective at forecasting dry winters, a critical season for water resources management. We conclude that ESP is skilful in a number of different contexts and thus should be operationalised in Ireland given its potential benefits for water managers and other stakeholders.</div
    corecore