4 research outputs found

    Water restriction and physiological traits in soybean genotypes contrasting for nitrogen fixation drought tolerance

    No full text
    Biological nitrogen fixation (BNF) is essential to the economic viability of the soybean [Glycine max (L.) Merrill] crop in Brazil, but drought may impair the BNF processes. We evaluated physiological traits of nitrogen fixation drought-tolerant (NFDT) (R01-581F, R01-416F and R02-1325) and drought-susceptible (CD 215 and BRS 317) genotypes of soybean subjected to drought or regular water supply between 45 and 55 days after emergence, in an experiment under greenhouse conditions in pots containing non-sterile soil. R01-581F had more stable photosynthetic and transpiration rates, and higher intercellular CO2 levels under drought. Drought reduced the chlorophyll concentration in all genotypes, but with less intensity in R01-581F and R02-1325. The NFDT genotypes generally showed higher concentrations of N, K and Mn in shoots, irrespective of the water condition. Exposure to drought increased total soluble sugars in nodules in all genotypes, as well as the concentrations of ureides in leaves and nodules, whereas ureides in petioles increased only in the susceptible genotypes. Drought negatively affected photosynthetic and BNF attributes; however, R01-581F showed the best performance, with potential for use in breeding programs aiming at drought-tolerant varieties

    Water restriction and physiological traits in soybean genotypes contrasting for nitrogen fixation drought tolerance

    No full text
    ABSTRACT Biological nitrogen fixation (BNF) is essential to the economic viability of the soybean [Glycine max (L.) Merrill] crop in Brazil, but drought may impair the BNF processes. We evaluated physiological traits of nitrogen fixation drought-tolerant (NFDT) (R01-581F, R01-416F and R02-1325) and drought-susceptible (CD 215 and BRS 317) genotypes of soybean subjected to drought or regular water supply between 45 and 55 days after emergence, in an experiment under greenhouse conditions in pots containing non-sterile soil. R01-581F had more stable photosynthetic and transpiration rates, and higher intercellular CO2 levels under drought. Drought reduced the chlorophyll concentration in all genotypes, but with less intensity in R01-581F and R02-1325. The NFDT genotypes generally showed higher concentrations of N, K and Mn in shoots, irrespective of the water condition. Exposure to drought increased total soluble sugars in nodules in all genotypes, as well as the concentrations of ureides in leaves and nodules, whereas ureides in petioles increased only in the susceptible genotypes. Drought negatively affected photosynthetic and BNF attributes; however, R01-581F showed the best performance, with potential for use in breeding programs aiming at drought-tolerant varieties

    Indicators of soil quality in the implantation of no-till system with winter crops

    No full text
    We assessed the effect of different winter crops on indicators of soil quality related to C and N cycling and C fractions in a Rhodic Kandiudult under no-till system at implantation, during two growing seasons, in Londrina PR Brazil. The experimental design was randomized blocks with split-plot in time arrangement, with four replications. The parcels were the winter crops: multicropping of cover crops with black oat (Avena strigosa), hairy vetch (Vicia villosa) and fodder radish (Raphanus sativus); sunflower (Heliantus annuus) intercropped with Urochloa ruziziensis; corn (Zea mays) intercropped with Urochloa; and corn; fodder radish; or wheat (Triticum aestivum) as sole crops. The subplots were the years: 2008 and 2009. Determinations consisted of total organic C, labile and resistant C, total N, microbial biomass C and N, the C/N ratio of soil organic matter, and the microbial quotient (qMic), besides microbiological and biochemical attributes, assessed only in 2009. The attributes significantly changed with the winter crops, especially the multicropping of cover crops and fodder radish, as well as effect of years. Despite stimulating the microbiological/biochemical activity, fodder radish cropping decreased the soil C in the second year, likewise the wheat cropping. The multicropping of cover crops in winter is an option for management in the establishment of no-till system, which contributes to increase the concentrations of C and stimulate the soil microbiological/biochemical activity
    corecore