28,747 research outputs found
Correlation of AH-1G airframe test data with a NASTRAN mathematical model
Test data was provided for evaluating a mathematical vibration model of the Bell AH-1G helicopter airframe. The math model was developed and analyzed using the NASTRAN structural analysis computer program. Data from static and dynamic tests were used for comparison with the math model. Static tests of the fuselage and tailboom were conducted to verify the stiffness representation of the NASTRAN model. Dynamic test data were obtained from shake tests of the airframe and were used to evaluate the NASTRAN model for representing the low frequency (below 30 Hz) vibration response of the airframe
Computing induced velocity perturbations due to a helicopter fuselage in a free stream
The velocity field of a representative helicopter fuselage in a free stream is computed. Perturbation velocities due to the fuselage are computed in a plan above the location of the helicopter rotor (rotor removed). The velocity perturbations computed by a source-panel model of the fuselage are compared with experimental measurements taken with a laser velocimeter. Three paneled fuselage models are studied: fuselage shape, fuselage shape with hub shape, and a body of revolution. The velocity perturbations computed for both fuselage shape models agree well with the measured velocity field except in the close vicinity of the rotor hub. In the hub region, without knowing the extent of separation, modeling of the effective source shape is difficult. The effects of the fuselage perturbations are not well-predicted with a simplified ellipsoid fuselage. The velocity perturbations due to the fuselage at the plane of the measurements have magnitudes of less than 8 percent of free-stream velocity. The velocity perturbations computed by the panel method are tabulated for the same locations at which previously reported rotor-inflow velocity measurements were made
Handling qualities aspects of NASA YF-12 flight experience
The handling qualities of the YF-12 airplane as observed during NASA research flights over the past five years were reviewed. Aircraft behavior during takeoff, acceleration, climb, cruise, descent, and landing are discussed. Pilot comments on the various flight phases and tasks are presented. Handling qualities parameters such as period, damping, amplitude ratios, roll-yaw coupling, and flight path response sensitivity are compared to existing and proposed handling qualities criteria. The influence of the propulsion systems, stability augmentation, autopilot systems, atmospheric gusts, and temperature changes are also discussed. YF-12 experience correlates well with flying qualities criteria, except for longitudinal short period damping, where existing and proposed criteria appear to be more stringent than necessary
Emotional and behavioral reaction to intrusive thoughts.
A self-report measure of the emotional and behavioral reactions to intrusive thoughts was developed. The article presents data that confirm the stability, reliability, and validity of the new seven-item measure. Emotional and behavioral reactions to intrusions emerged as separate factors on the Emotional and Behavioral Reactions to Intrusions Questionnaire (EBRIQ), a finding confirmed by an independent stress study. Test-retest reliability over 30 to 70 days was good. Expected relationships with other constructs were significant. Stronger negative responses to intrusions were associated with lower mindfulness scores and higher ratings of experiential avoidance, thought suppression, and intensity and frequency of craving. The EBRIQ will help explore differences in reactions to intrusive thoughts in clinical and nonclinical populations, and across different emotional and behavioral states. It will also be useful in assessing the effects of therapeutic approaches such as mindfulness
Comment on "Optical Response of Strongly Coupled Nanopraticles in Dimer Arrays" (Phys. Rev. B 71(4), 045404, 2005)
I have re-calculated the extinction spectra of aggregates of two silver
nanospheres shown in Figs.~2 and 3 of Ref.~8. I have used the approximate
method of images according to Ref.~8 and an exact numerical technique. I have
found that the three sets of data (those I have obtained by the method of
images, the numerical results, and the results published in Ref.~8) do not
coincide. In this Comment, I discuss the reasons for these discrepancies and
the general applicability of the method of images to the quasi-static
electromagnetic problem of two interacting nanospheres.Comment: 4 pages, 4 figures, submitted to Phys. Rev.
Crystallization of Carbon Oxygen Mixtures in White Dwarf Stars
We determine the phase diagram for dense carbon/ oxygen mixtures in White
Dwarf (WD) star interiors using molecular dynamics simulations involving liquid
and solid phases. Our phase diagram agrees well with predictions from Ogata et
al. and Medin and Cumming and gives lower melting temperatures than Segretain
et al. Observations of WD crystallization in the globular cluster NGC 6397 by
Winget et al. suggest that the melting temperature of WD cores is close to that
for pure carbon. If this is true, our phase diagram implies that the central
oxygen abundance in these stars is less than about 60%. This constraint, along
with assumptions about convection in stellar evolution models, limits the
effective S factor for the C()O reaction to
S_{300} <= 170 keV barns.Comment: 4 pages, 2 figures, Phys. Rev. Lett. in pres
Genetic parameters for animal mortality in pasture-based, seasonal-calving dairy and beef herds
peer-reviewedIn the absence of informative health and welfare phenotypes, breeding for reduced animal mortality could improve overall health and welfare, provided genetic variability in animal mortality exists. The objective of the present study was to estimate genetic (and other) variance components for animal mortality in pasture-based, seasonal-calving dairy and beef herds across multiple life stages as well as to quantify the genetic relationship in mortality among life stages. National mortality records were available for all cattle born in the Republic of Ireland. Cattle were grouped into three life stages based on age (0 to 30 days, 31 to 365 days, 366 to 1095 days) whereas females with ≥1 calving event were also grouped into five life stages, based on parity number (1, 2, 3, 4, and 5), considering both the initial 60 days of lactation and a cow's entire lactation period, separately. The mean mortality prevalence ranged from 0.70 to 5.79% in young animals and from 0.53 to 3.86% in cows. Variance components and genetic correlations were estimated using linear mixed models using 21,637 to 100,993 records. Where heritability estimates were different from zero, direct heritability estimates for mortality in young animals (≤1095 days) ranged from 0.006 to 0.040, whereas the genetic standard deviation ranged from 0.015 to 0.034. The contribution of a maternal genetic effect to mortality in young animals was evident up to 30 days of age in dairy herds, but this was only the case in preliminary analysis of stillbirths in beef herds. Based on the estimated genetic standard deviation in the present study, the incidence of mortality in young animals could be reduced through breeding by up to 3.4 percentage units per generation. For cows, direct heritability estimates for mortality, where different from zero, ranged from 0.003 to 0.049. The genetic standard deviation for mortality in cows ranged from 0.005 to 0.016 during the initial 60 days of lactation and ranged from 0.011 to 0.032 during the cow's entire lactation. Genetic correlations among the age groups as well as between the age groups and cow parities had high standard errors. Genetic correlations among the cow parities were moderate to strongly positive (ranging from 0.66 to 0.99) and mostly different from zero. Results from the present study can be used to inform genetic evaluations for mortality in young animals and in cows as well as the potential genetic gain achievable
Quantised orbital angular momentum transfer and magnetic dichroism in the interaction of electron vortices with matter
Following the very recent experimental realisation of electron vortices, we
consider their interaction with matter, in particular the transfer of orbital
angular momentum in the context of electron energy loss spectroscopy, and the
recently observed dichroism in thin film magnetised iron samples. We show here
that orbital angular momentum exchange does indeed occur between electron
vortices and the internal electronic-type motion, as well as center of mass
motion of atoms in the electric dipole approximation. This contrasts with the
case of optical vortices where such transfer only occurs in transitions
involving multipoles higher than the dipole. The physical basis of the observed
dichroism is explained
Correlation of AH-1G helicopter flight vibration data and tailboom static test data with NASTRAN analytical results
Level flight airframe vibration at main rotor excitation frequencies was calculated. A NASTRAN tailboom analysis was compared with test data for evaluation of methods used to determine effective skin in a semimonocoque sheet-stringer structure. The flight vibration correlation involved comparison of level flight vibration for two helicopter configurations: clean wing, at light gross weight and wing stores at heavy gross weight. In the tailboom correlation, deflections and internal loads were compared using static test data and a NASTRAN analysis. An iterative procedure was used to determine the amount of effective skin of buckled panels under compression load
Neutrino Scattering in Heterogeneous Supernova Plasmas
Neutrinos in core collapse supernovae are likely trapped by neutrino-nucleus
elastic scattering. Using molecular dynamics simulations, we calculate neutrino
mean free paths and ion-ion correlation functions for heterogeneous plasmas.
Mean free paths are systematically shorter in plasmas containing a mixture of
ions compared to a plasma composed of a single ion species. This is because
neutrinos can scatter from concentration fluctuations. The dynamical response
function of a heterogeneous plasma is found to have an extra peak at low
energies describing the diffusion of concentration fluctuations. Our exact
molecular dynamics results for the static structure factor reduce to the Debye
Huckel approximation, but only in the limit of very low momentum transfers.Comment: 11 pages, 13 figure
- …