1,056 research outputs found

    Evaluation of carcinogenic/co-carcinogenic activity of a common chewing product, pan masala, in mouse skin, stomach and esophagus

    Get PDF
    Pan masala, a dry powdered mixture of areca nut, catechu, lime, unspecified spices and flavoring agents, has gained widespread popularity as a chewing substitute in India. In this study, the carcinogenic and tumor-promoting potential of an ethanolic pan masala extract (EPME) was determined using skin of S/RVCri-ba mice and forestomach and esophagus of ICRC mice as the target tissues. Carcinogenic activity of pan masala was tested by painting the mouse skin for 40 weeks with EPME or by gavage feeding for 6 months. Following initiation with 9,10-dimethylbenz(a)anthracene (DMBA), carcinogenesis of mouse skin was promoted with different doses of EPME, while gastric- and esophageal-tumor-promoting activity was determined by administering EPME by gavage to animals initiated with diethylnitrosamine (DEN). The ability of EPME to effect progression of skin papilloma to carcinoma and cutaneous alterations after a single or multiple EPME treatment were also evaluated. EPME at 25 mg per dose promoted skin-papilloma formation between 30 and 40 weeks of treatment and enhanced the rate of conversion of papilloma to carcinoma. Induction of mild epidermal hyperplasia, dermal edema, increase in epidermal mitotic activity and the rate of epidermal and dermal DNA synthesis by EPME correlated well with its skin-tumor-promoting potential. In ICRC mice, EPME was inactive as a complete carcinogen, but effectively promoted the development of forestomach and esophageal papilloma and carcinoma in a concentration-dependent manner. The tumor incidence at 25 mg EPME per dose was comparable with that obtained in the 12-0-tetradecanoylphorbol-13 acetate(TPA)-treated group. The findings indicate that habitual pan-masala use may exert carcinogenic and co-carcinogenic influence

    Long-term carcinogenicity of pan masala in Swiss mice

    Get PDF
    Carcinogenicity of pan masala, a dry powdered chewing mixture of areca nut, catechu, lime, spices and flavoring agents was evaluated by means of the long-term animal bio-assay 6- to 7-week old male and female S/RVCri mice were divided randomly into intermediate and lifetime exposure groups and fed normal diet without pan masala - (zero dose) or diet containing 2.5% and 5% pan masala. Animals in the intermediate-exposure group (n = 10/gender/dose group) were killed after 6, 12 or 18 months of treatment, while those in the lifetime-exposure group (n = 54/gender/dose group) were killed when moribund or at the termination of the experiment at 24 months. Several tissues were processed for histopathological examination. The body weight and survival rate of mice fed pan masala were lower than that of the controls. Histopathological observations of tissues from control animals did not reveal any neoplastic alterations. However, lifetime feeding of pan masala induced adenoma of the liver, stomach, prostate and sebaceous glands, also forestomach papilloma, liver hamartoma, hepatoma and hemangioma, carcinoma of the forestomach, adenocarcinoma of the lung and liver, and testicular lymphoma. Neoplastic lesions appeared mainly in the liver (n = 13), stomach (n = 3) and lung (n = 8). Lung adenocarcinoma, the most frequent malignant tumor type, was observed in 2/120 mice in the intermediate-exposure group and in 8/216 animals in the lifetime-exposure group. Statistical analysis of tumor-induction data revealed a significant dose-related increase in lung adenocarcinomas but not in liver and stomach neoplasms indicating that lung is the major target tissue for the carcinogenic action of pan masala

    Attenuation of cAMP-mediated responses in MA-10 Leydig tumor cells by genetic manipulation of a cAMP-phosphodiesterase

    Get PDF
    In order to assess the effect of increased cAMP degradation on the responsiveness on an endocrine cell, we have obtained stable transfectants of MA-10 Leydig tumor cells that overexpress a mammalian cAMP-phosphodiesterase. Two novel cell lines, designated MA-10(P+8) and MA-10(P+29), that express high levels of the transfected enzyme were characterized. Although the basal levels of cAMP in the mutant cell lines are comparable to those of the wild-type cells, the increase in cAMP accumulation elicited by human choriogonadotropin (hCG) is severely blunted. Further studies with MA-10(P+29) show that the ability of hCG to stimulate adenylyl cyclase activity is normal. The failure of MA-10(P+29) cells to accumulate cAMP in response to hCG can be correlated with a similar reduction in hCG-stimulated steroidogenesis. On the other hand, the maximal steroidogenic response of MA-10(P+29) cells to dibutyryl cAMP, a cAMP analogue that is fairly resistant to phosphodiesterase degradation, is normal. We also show that the ability of these cells to respond to hCG with increased cAMP accumulation and steroid synthesis can be restored with a specific phosphodiesterase inhibitor. These results demonstrate that overexpression of a cAMP-phosphodiesterase in MA-10 cells limits the levels of cAMP attained under hCG stimulation and supresses the steroidogenic response of these cells to hCG. Since gonadotropins increase the cAMP-phosphodiesterase activity in their target cells, these findings also provide evidence that this regulation plays a major role in the modulation of cell responsiveness. Last, these new cell lines should be valuable in the study of the actions of cAMP because they express a conditional and reversible cAMP-resistant phenotype

    Double Exponential Instability of Triangular Arbitrage Systems

    Full text link
    If financial markets displayed the informational efficiency postulated in the efficient markets hypothesis (EMH), arbitrage operations would be self-extinguishing. The present paper considers arbitrage sequences in foreign exchange (FX) markets, in which trading platforms and information are fragmented. In Kozyakin et al. (2010) and Cross et al. (2012) it was shown that sequences of triangular arbitrage operations in FX markets containing 4 currencies and trader-arbitrageurs tend to display periodicity or grow exponentially rather than being self-extinguishing. This paper extends the analysis to 5 or higher-order currency worlds. The key findings are that in a 5-currency world arbitrage sequences may also follow an exponential law as well as display periodicity, but that in higher-order currency worlds a double exponential law may additionally apply. There is an "inheritance of instability" in the higher-order currency worlds. Profitable arbitrage operations are thus endemic rather that displaying the self-extinguishing properties implied by the EMH.Comment: 22 pages, 22 bibliography references, expanded Introduction and Conclusion, added bibliohraphy reference

    Atlas construction and spatial normalisation to facilitate radiation-induced late effects research in childhood cancer

    Get PDF
    Reducing radiation-induced side effects is one of the most important challenges in paediatric cancer treatment. Recently, there has been growing interest in using spatial normalisation to enable voxel-based analysis of radiation-induced toxicities in a variety of patient groups. The need to consider three-dimensional distribution of doses, rather than dose-volume histograms, is desirable but not yet explored in paediatric populations. In this paper, we investigate the feasibility of atlas construction and spatial normalisation in paediatric radiotherapy. We used planning computed tomography (CT) scans from twenty paediatric patients historically treated with craniospinal irradiation to generate a template CT that is suitable for spatial normalisation. This childhood cancer population representative template was constructed using groupwise image registration. An independent set of 53 subjects from a variety of childhood malignancies was then used to assess the quality of the propagation of new subjects to this common reference space using deformable image registration (i.e., spatial normalisation). The method was evaluated in terms of overall image similarity metrics, contour similarity and preservation of dose-volume properties. After spatial normalisation, we report a dice similarity coefficient of 0.95±0.05, 0.85±0.04, 0.96±0.01, 0.91±0.03, 0.83±0.06 and 0.65±0.16 for brain and spinal canal, ocular globes, lungs, liver, kidneys and bladder. We then demonstrated the potential advantages of an atlas-based approach to study the risk of second malignant neoplasms after radiotherapy. Our findings indicate satisfactory mapping between a heterogeneous group of patients and the template CT. The poorest performance was for organs in the abdominal and pelvic region, likely due to respiratory and physiological motion and to the highly deformable nature of abdominal organs. More specialised algorithms should be explored in the future to improve mapping in these regions. This study is the first step toward voxel-based analysis in radiation-induced toxicities following paediatric radiotherapy

    Risk of radiation-induced second malignant neoplasms from photon and proton radiotherapy in paediatric abdominal neuroblastoma

    Get PDF
    Background and Purpose: State-of-the-art radiotherapy modalities have the potential of reducing late effects of treatment in childhood cancer survivors. Our aim was to investigate the carcinogenic risk associated with 3D conformal (photon) radiation (3D-CRT), intensity modulated arc therapy (IMAT) and pencil beam scanning proton therapy (PBS-PT) in the treatment of paediatric abdominal neuroblastoma. Materials and Methods: The risk of radiation-induced second malignant neoplasm (SMN) was estimated using the concept of organ equivalent dose (OED) for eleven organs (lungs, rectum, colon, stomach, small intestine, liver, bladder, skin, central nervous system (CNS), bone, and soft tissues). The risk ratio (RR) between radiotherapy modalities and lifetime absolute risks (LAR) were reported for twenty abdominal neuroblastoma patients (median, 4y; range, 1-9y) historically treated with 3D-CRT that were also retrospectively replanned for IMAT and PBS-PT. Results: The risk of SMN due to primary radiation was reduced in PBS-PT against 3D-CRT and IMAT for most patients and organs. The RR across all organs ranged from 0.38 ± 0.22 (bladder) to 0.98 ± 0.04 (CNS) between PBS-PT and IMAT, and 0.12 ± 0.06 (rectum and bladder) to 1.06 ± 0.43 (bone) between PBS-PT and 3D-CRT. The LAR for most organs was within 0.01–1% (except the colon) with a cumulative risk of 21 ± 13%, 35 ± 14% and 35 ± 16% for PBS-PT, IMAT and 3D-CRT, respectively. Conclusions: PBS-PT was associated with the lowest risk of radiation-induced SMN compared to IMAT and 3D-CRT in abdominal neuroblastoma treatment. Other clinical endpoints and plan robustness should also be considered for optimal plan selection

    A comparative analysis of institutional arrangements in watershed development projects in India:Global Theme on Agroecosystems Report No. 50

    Get PDF
    Institutions are mechanisms provided by individuals in the community to resolve social dilemmas and these define and restrict access to and control over resources. In the context of watershed development they are organizational structures evolved in the process and their mutual interaction mechanism. Watershed development approach has evolved over the decades bringing a paradigm shift in thinking of decision makers, which resulted in shifting responsibilities of natural resource management towards local communities and following participatory approaches in implementation. As a result the new generation of watershed development projects encounter multi stakeholder situation requiring institutional arrangements to achieve efficiency and sustainability. The present study has looked into four leading watershed development projects viz: Andhra Pradesh Rural Livelihoods Programme (APRLP), Sujala Watershed Program in Karnataka, Indo-German Watershed Program (IGWP) in Maharashtra and Drought Prone Area Programme (DPAP) following Hariyali Guidelines, Rajasthan in India, which is known to have designed innovative operational modalities to enhance communities’ participation in management and implementation of the projects. There are no efforts in critically comparing different projects but assembling elements of institutional mechanisms and their mutual interactions so as to abstract the potentially significant institutional interaction and arrangements that could enhance the efficiency of any programe. Also development of capacities of these institutions and stakeholders and their linkages are studied closely to complement and fortify the objective of this study. This study showed that through capacity building and development of social capital along with suitable institutional mechanisms at local watershed as well as supporting institutions in terms of gender, equity and sustainability, improved livelihoods could be achieved. Critical institutional mechanisms and actors’ linkages in these programs are used to infer “good institutional mechanisms” for improving impact of watershed programs in India

    Murine leukemia virus RNA dimerization is coupled to transcription and splicing processes

    Get PDF
    Most of the cell biological aspects of retroviral genome dimerization remain unknown. Murine leukemia virus (MLV) constitutes a useful model to study when and where dimerization occurs within the cell. For instance, MLV produces a subgenomic RNA (called SD') that is co-packaged with the genomic RNA predominantly as FLSD' heterodimers. This SD' RNA is generated by splicing of the genomic RNA and also by direct transcription of a splice-associated retroelement of MLV (SDARE). We took advantage of these two SD' origins to study the effects of transcription and splicing events on RNA dimerization. Using genetic approaches coupled to capture of RNA heterodimer in virions, we determined heterodimerization frequencies in different cellular contexts. Several cell lines were stably established in which SD' RNA was produced by either splicing or transcription from SDARE. Moreover, SDARE was integrated into the host chromosome either concomitantly or sequentially with the genomic provirus. Our results showed that transcribed genomic and SD' RNAs preferentially formed heterodimers when their respective proviruses were integrated together. In contrast, heterodimerization was strongly affected when the two proviruses were integrated independently. Finally, dimerization was enhanced when the transcription sites were expected to be physically close. For the first time, we report that splicing and RNA dimerization appear to be coupled. Indeed, when the RNAs underwent splicing, the FLSD' dimerization reached a frequency similar to co-transcriptional heterodimerization. Altogether, our results indicate that randomness of heterodimerization increases when RNAs are co-expressed during either transcription or splicing. Our results strongly support the notion that dimerization occurs in the nucleus, at or near the transcription and splicing sites, at areas of high viral RNA concentration
    corecore