6,414 research outputs found

    Notions of controllability for quantum mechanical systems

    Get PDF
    In this paper, we define four different notions of controllability of physical interest for multilevel quantum mechanical systems. These notions involve the possibility of driving the evolution operator as well as the state of the system. We establish the connections among these different notions as well as methods to verify controllability. The paper also contains results on the relation between the controllability in arbitrary small time of a system varying on a compact transformation Lie group and the corresponding system on the associated homogeneous space. As an application, we prove that, for the system of two interacting spin 1/2 particles, not every state transfer can be obtained in arbitrary small time.Comment: Replaced by a new version which contains the proof

    Surviving on Mars: test with LISA simulator

    Full text link
    We present the biological results of some experiments performed in the Padua simulators of planetary environments, named LISA, used to study the limit of bacterial life on the planet Mars. The survival of Bacillus strains for some hours in Martian environment is shortly discussed.Comment: To be published on Highlights of Astronomy, Volume 15 XXVIIth IAU General Assembly, August 2009 Ian F Corbett, ed. 2 pages, 1 figur

    Smooth optimal control with Floquet theory

    Full text link
    This paper describes an approach to construct temporally shaped control pulses that drive a quantum system towards desired properties. A parametrization in terms of periodic functions with pre-defined frequencies permits to realize a smooth, typically simple shape of the pulses; their optimization can be performed based on a variational analysis with Floquet theory. As we show with selected specific examples, this approach permits to control the dynamics of interacting spins, such that gate operations and entanglement dynamics can be implemented with very high accuracy

    A General Framework for Recursive Decompositions of Unitary Quantum Evolutions

    Full text link
    Decompositions of the unitary group U(n) are useful tools in quantum information theory as they allow one to decompose unitary evolutions into local evolutions and evolutions causing entanglement. Several recursive decompositions have been proposed in the literature to express unitary operators as products of simple operators with properties relevant in entanglement dynamics. In this paper, using the concept of grading of a Lie algebra, we cast these decompositions in a unifying scheme and show how new recursive decompositions can be obtained. In particular, we propose a new recursive decomposition of the unitary operator on NN qubits, and we give a numerical example.Comment: 17 pages. To appear in J. Phys. A: Math. Theor. This article replaces our earlier preprint "A Recursive Decomposition of Unitary Operators on N Qubits." The current version provides a general method to generate recursive decompositions of unitary evolutions. Several decompositions obtained before are shown to be as a special case of this general procedur

    Degrees of controllability for quantum systems and applications to atomic systems

    Get PDF
    Precise definitions for different degrees of controllability for quantum systems are given, and necessary and sufficient conditions are discussed. The results are applied to determine the degree of controllability for various atomic systems with degenerate energy levels and transition frequencies.Comment: 20 pages, IoP LaTeX, revised and expanded versio

    Methylglyoxal-dependent glycative stress and deregulation of SIRT1 functional network in the ovary of PCOS mice

    Get PDF
    Advanced glycation end-products (AGEs) are involved in the pathogenesis and consequences of polycystic ovary syndrome (PCOS), a complex metabolic disorder associated with female infertility. The most powerful AGE precursor is methylglyoxal (MG), a byproduct of glycolysis, that is detoxified by the glyoxalase system. By using a PCOS mouse model induced by administration of dehydroepiandrosterone (DHEA), we investigated whether MG-dependent glycative stress contributes to ovarian PCOS phenotype and explored changes in the Sirtuin 1 (SIRT1) functional network regulating mitochondrial functions and cell survival. In addition to anovulation and reduced oocyte quality, DHEA ovaries revealed altered collagen deposition, increased vascularization, lipid droplets accumulation and altered steroidogenesis. Here we observed increased intraovarian MG-AGE levels in association with enhanced expression of receptor for AGEs (RAGEs) and deregulation of the glyoxalase system, hallmarks of glycative stress. Moreover, DHEA mice exhibited enhanced ovarian expression of SIRT1 along with increased protein levels of SIRT3 and superoxide dismutase 2 (SOD2), and decreased peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC1 alpha), mitochondrial transcriptional factor A (mtTFA) and translocase of outer mitochondrial membrane 20 (TOMM20). Finally, the presence of autophagy protein markers and increased AMP-activated protein kinase (AMPK) suggested the involvement of SIRT1/AMPK axis in autophagy activation. Overall, present findings demonstrate that MG-dependent glycative stress is involved in ovarian dysfunctions associated to PCOS and support the hypothesis of a SIRT1-dependent adaptive response
    • …
    corecore