13 research outputs found

    Granular Flows in a Rotating Drum: the Scaling Law between Velocity and Thickness of the Flow

    Full text link
    The flow of dry granular material in a half-filled rotating drum is studied. The thickness of the flowing zone is measured for several rotation speeds, drum sizes and beads sizes (size ratio between drum and beads ranging from 47 to 7400). Varying the rotation speed, a scaling law linking mean velocity vs thickness of the flow, v∼hmv\sim h^m, is deduced for each couple (beads, drum). The obtained exponent mm is not always equal to 1, value previously reported in a drum, but varies with the geometry of the system. For small size ratios, exponents higher than 1 are obtained due to a saturation of the flowing zone thickness. The exponent of the power law decreases with the size ratio, leading to exponents lower than 1 for high size ratios. These exponents imply that the velocity gradient of a dry granular flow in a rotating drum is not constant. More fundamentally, these results show that the flow of a granular material in a rotating drum is very sensible to the geometry, and that the deduction of the ``rheology'' of a granular medium flowing in such a geometry is not obvious

    Quantification of the water boiling heat transfer in micro-structures by image analysis

    Get PDF
    The heat transfer performance of a micro-vaporizer has been measured by conventional methods (using temperatures, flow rates, effective power input). The study was carried out for laminar flow in channels (5 mm×3 cm×200 μm) micro-structured with square obstacles to increase the specific area. The results show that high heat transfer coefficients (1300– 2500 W m−2/C−1) can be reached in such a micro-structured channel. Image analysis was done to estimate the volume vapour fraction, which can be converted into the mass vapour fraction using a slip ratio and avoids the need for any temperature or electric power input measurements. The estimation of this slip ratio is discussed in this paper

    Introduction of image analysis for the quantification of the boiling flow heat transfer

    Get PDF
    Heat transfer performances for non-boiling and boiling flow of a micro-vaporizer have been measured by standard methods (temperatures, flow rates, effective power input). The study was carried out for laminar flow (Re<25) in silicon micro-channels (5 mm×3 cm×200 μm) filled with ordered obstacles to increase the specific area. The results obtained show a strong dependence of the heat transfer on the Reynolds number for the non-boiling flow and pretty high heat transfer coefficients (1300–2500 W/m2 K) for the boiling flow. Image analysis was introduced to estimate the volume vapour fraction, which can be converted into the mass vapour fraction using the slip ratio. The estimation of this slip ratio is discussed in this paper

    Fourier spectral and wavelet solvers for the incompressible Navier–Stokes equations with volume-penalization: Convergence of a dipole–wall collision

    Get PDF
    In this study, we use volume-penalization to mimic the presence of obstacles in a flow or a domain with no-slip boundaries. This allows in principle the use of fast Fourier spectral methods and coherent vortex simulation techniques (based on wavelet decomposition of the flow variables) to compute turbulent wall-bounded flow or flows around solid obstacles by simply adding one term in the equation. Convergence checks are reported using a recently revived, and unexpectedly difficult dipole–wall collision as a benchmark computation. Several quantities, like the vorticity isolines, truncation error, kinetic energy and enstrophy are inspected for a collision of a dipole with a no-slip wall and compared with available benchmark data obtained with a standard Chebyshev pseudospectral method. We quantify the possible deteriorating effects of the Gibbs phenomenon present in the Fourier based schemes due to continuity restrictions of the penalized Navier–Stokes equations on the wall. It is found that Gibbs oscillations have a negligible effect on the flow evolution allowing higher-order recovery of the accuracy on a Fourier basis by means of postprocessing. An advantage of coherent vortex simulations, on the other hand, is that the degrees of freedom of the flow computation can strongly be reduced. In this study, we quantify the possible reduction of degrees of freedom while keeping the accuracy. For an optimal convergence scenario the penalization parameter has to scale with the number of Fourier and wavelet modes. In addition, an implicit treatment of the Darcy drag term in the penalized Navier–Stokes equations is beneficial since this allows one to set the time step independent from the penalization parameter without additional computational or memory requirements
    corecore