8 research outputs found

    Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    No full text
    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessmen

    Accumulation of background levels of persistent organochlorine and organobromine pollutants through the soil-earthworm-hedgehog food chain

    No full text
    The bioaccumulation of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and DDT and metabolites, was investigated in the soil–earthworm–hedgehog food chain. Concentrations of selected POPs were measured in soil and earthworms collected in grassland and open woodland and in hair and blood of hedgehogs foraging in two parks containing these habitats. Despite background concentrations in soil (ranging from 1.3 to 9.3 ng/g for DDTs, 2.3 to 6.5 ng/g for PCBs and 0.08 to 0.20 ng/g for PBDEs), biota-soil accumulation factors (BSAFs) indicated that earthworms accumulated POPs (0.48–1.70 for DDTs, 1.09–2.76 for PCBs and 1.99–5.67 for PBDEs) and that animals feeding on earthworms are potentially exposed to higher concentrations of pollutants. BSAFs decreased with increasing soil concentrations for the three groups of compounds, suggesting that steady-state equilibrium was not reached in soil or earthworms. Positive, but low, log-linear relationships were found for DDT (r2 = 0.23, p <0.05 for Brasschaat and r2 = 0.63, p <0.01 for Hoboken) and PCB (r2 = 0.13, p <0.05 for both parks) concentrations between soil and earthworms. In order to relate earthworm to hedgehog POP concentrations, the foraging behavior of each individual was taken into account. The use of hair as a potential biomonitoring tissue in exposure and risk assessment of POPs was evaluated by examining the relationship between PCB and p,p'-DDE levels in hedgehogs' hair and blood. Contaminant profiles were used to gain insight into biotransformation of the studied compounds in each step of the investigated food chain and in the blood of hedgehogs, as well as the consequences thereof for their incorporation in hair. The absence of a discernable relationship between POP concentrations in earthworms and hair is possible due to variation in individual foraging behavior and POP uptake. Our results suggest that POPs in tissues should be measured from an adequate number of individuals per population instead of relying on indirect estimates from levels in soil or prey items
    corecore