46 research outputs found

    Chinese food security and climate change: Agriculture futures

    Get PDF
    Climate change is now affecting agriculture and food production in every country of the world. Here the authors present the IMPACT model results on yield, production, and net trade of major crops in China, and on daily calorie availability as an overall indicator of food security under climate change scenarios and socio-economic pathways in 2050. The obtained results show a relatively optimistic outlook on yield, production and trade toward 2050. The outcomes of calorie availability suggest that China will be able to maintain a level of at least 3,000 kilocalories per day through 2010 to 2050. Overall, Chinese agriculture is relatively resilient to climate change. It is unlikely that Chinese food security by 2050 will be compromised in the context of climate change. The major challenge to food security, however, will rise from increasing demand coupled with regional disparities in adaptive capacity to climate change

    Articulating the effect of food systems innovation on the Sustainable Development Goals

    Get PDF
    Acknowledgments MH, DM-D, JP, JRB, AH, GDB, CMG, CLM, and KR acknowledge funding from the Commonwealth Scientific and Industrial Research Organisation. PKT, BMC, AJ, and AML acknowledge funding from the CGIAR Research Program on Climate Change, Agriculture and Food Security, which is supported by the CGIAR Trust Fund and through bilateral funding agreements. PP acknowledges funding from the German Federal Ministry of Education and Research for the BIOCLIMAPATHS project.Peer reviewedPublisher PD

    Key determinants of global land-use projections

    Get PDF
    Land use is at the core of various sustainable development goals. Long-term climate foresight studies have structured their recent analyses around five socio-economic pathways (SSPs), with consistent storylines of future macroeconomic and societal developments; however, model quantification of these scenarios shows substantial heterogeneity in land-use projections. Here we build on a recently developed sensitivity approach to identify how future land use depends on six distinct socio-economic drivers (population, wealth, consumption preferences, agricultural productivity, land-use regulation, and trade) and their interactions. Spread across models arises mostly from diverging sensitivities to long-term drivers and from various representations of land-use regulation and trade, calling for reconciliation efforts and more empirical research. Most influential determinants for future cropland and pasture extent are population and agricultural efficiency. Furthermore, land-use regulation and consumption changes can play a key role in reducing both land use and food-security risks, and need to be central elements in sustainable development strategies

    Mitigating risk of exceeding environmental limits requires ambitious food system interventions

    Get PDF
    Transforming the global food system is necessary to avoid exceeding planetary boundaries. A robust evidence base is crucial to assess the scale and combination of interventions required for a sustainable transformation. We developed a risk assessment framework, underpinned by a meta-regression of 60 global food system modeling studies, to quantify the potential of individual and combined interventions to mitigate the risk of exceeding the boundaries for land-system change, freshwater use, climate change, and biogeochemical flows by 2050. Limiting the risk of exceedance across four key planetary boundaries requires a high but plausible level of ambition in all demand-side (diet, population, waste) and most supply-side interventions. Attaining the required level of ambition for all interventions relies on embracing synergistic actions across the food system

    Caribbean-Wide, Long-Term Study of Seagrass Beds Reveals Local Variations, Shifts in Community Structure and Occasional Collapse

    Get PDF
    The CARICOMP monitoring network gathered standardized data from 52 seagrass sampling stations at 22 sites (mostly Thalassia testudinum-dominated beds in reef systems) across the Wider Caribbean twice a year over the period 1993 to 2007 (and in some cases up to 2012). Wide variations in community total biomass (285 to >2000 g dry m−2) and annual foliar productivity of the dominant seagrass T. testudinum (2000 g dry m−2) were found among sites. Solar-cycle related intra-annual variations in T. testudinum leaf productivity were detected at latitudes > 16°N. Hurricanes had little to no long-term effects on these well-developed seagrass communities, except for 1 station, where the vegetation was lost by burial below ∼1 m sand. At two sites (5 stations), the seagrass beds collapsed due to excessive grazing by turtles or sea-urchins (the latter in combination with human impact and storms). The low-cost methods of this regional-scale monitoring program were sufficient to detect long-term shifts in the communities, and fifteen (43%) out of 35 long-term monitoring stations (at 17 sites) showed trends in seagrass communities consistent with expected changes under environmental deterioration.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR
    corecore