3 research outputs found
Recommended from our members
Growth of continuous graphene by open roll-to-roll chemical vapor deposition
We demonstrate the growth of high-quality, continuous monolayer graphene on Cu foils using an open roll-to-roll (R2R) chemical vapor deposition (CVD) reactor with both static and moving foil growth conditions. N2 instead of Ar was used as carrier gas to reduce process cost, and the concentrations of H2 and CH4 reactants were kept below the lower explosive limit to ensure process safety for reactor ends open to ambient. The carrier mobility of graphene deposited at a Cu foil winding speed of 5 mm/min was 5270–6040 cm2 V−1 s−1 at room temperature (on 50 μm × 50 μm Hall devices). These results will enable the inline integration of graphene CVD for industrial R2R production.The authors acknowledge funding from the EC project GRAFOL, grant 285275 and EPSRC grant Graphted EP/K0166636
Growth Kinetics and Growth Mechanism of Ultrahigh Mass Density Carbon Nanotube Forests on Conductive Ti/Cu Supports
We evaluate the growth kinetics and growth mechanism of ultrahigh mass density carbon nanotube forests. They are synthesized by chemical vapor deposition at 450 °C using a conductive Ti/Cu support and Co-Mo catalyst system. We find that Mo stabilizes Co particles preventing lift off during the initial growth stage, thus promoting the growth of ultrahigh mass density nanotube forests by the base growth mechanism. The morphology of the forest gradually changes with growth time, mostly because of a structural change of the catalyst particles. After 100 min growth, toward the bottom of the forest, the area density decreases from ∼3-6 × 1011cm-2to ∼5 × 1010cm-2and the mass density decreases from 1.6 to 0.38 g cm-3. We also observe part of catalyst particles detached and embedded within nanotubes. The progressive detachment of catalyst particles results in the depletion of the catalyst metals on the substrate surfaces. This is one of the crucial reasons for growth termination and may apply to other catalyst systems where the same features are observed. Using the packed forest morphology, we demonstrate patterned forest growth with a pitch of ∼300 nm and a line width of ∼150 nm. This is one of the smallest patterning of the carbon nanotube forests to date