5 research outputs found

    Absence of XMRV and Closely Related Viruses in Primary Prostate Cancer Tissues Used to Derive the XMRV-Infected Cell Line 22Rv1

    Get PDF
    The 22Rv1 cell line is widely used for prostate cancer research and other studies throughout the world. These cells were established from a human prostate tumor, CWR22, that was serially passaged in nude mice and selected for androgen independence. The 22Rv1 cells are known to produce high titers of xenotropic murine leukemia virus-related virus (XMRV). Recent studies suggested that XMRV was inadvertently created in the 1990's when two murine leukemia virus (MLV) genomes (pre-XMRV1 and pre-XMRV-2) recombined during passaging of the CWR22 tumor in mice. The conclusion that XMRV originated from mice and not the patient was based partly on the failure to detect XMRV in early CWR22 xenografts. While that deduction is certainly justified, we examined the possibility that a closely related virus could have been present in primary tumor tissue. Here we report that we have located the original prostate tumor tissue excised from patient CWR22 and have assayed the corresponding DNA by PCR and the tissue sections by fluorescence in situ hybridization for the presence of XMRV or a similar virus. The primary tumor tissues lacked mouse DNA as determined by PCR for intracisternal A type particle DNA, thus avoiding one of the limitations of studying xenografts. We show that neither XMRV nor a closely related virus was present in primary prostate tissue of patient CWR22. Our findings confirm and reinforce the conclusion that XMRV is a recombinant laboratory-generated mouse virus that is highly adapted for human prostate cancer cells

    The Impact of an Interactive Statistics Module on Novices’ Development of Scientific Process Skills and Attitudes in a First-Semester Research Foundations Course

    Full text link
    Evidence suggests that incorporating quantitative reasoning exercises into existent curricular frameworks within the science, technology, engineering, and mathematics (STEM) disciplines is essential for novices’ development of conceptual understanding and process skills in these domains. Despite this being the case, such studies acknowledge that students often experience difficulty in applying mathematics in the context of scientific problems. To address this concern, the present study sought to explore the impact of active demonstrations and critical reading exercises on novices’ comprehension of basic statistical concepts, including hypothesis testing, experimental design, and interpretation of research findings. Students first engaged in a highly interactive height activity that served to intuitively illustrate normal distribution, mean, standard deviation, and sample selection criteria. To enforce practical applications of standard deviation and p-value, student teams were subsequently assigned a figure from a peer-reviewed primary research article and instructed to evaluate the trustworthiness of the data. At the conclusion of this exercise, students presented their evaluations to the class for open discussion and commentary. Quantitative assessment of pre- and post-module survey data indicated a statistically significant increase both in students’ scientific reasoning and process skills and in their self-reported confidence in understanding the statistical concepts presented in the module. Furthermore, data indicated that the majority of students (>85%) found the module both interesting and helpful in nature. Future studies will seek to develop additional, novel exercises within this area and to evaluate the impact of such modules across a variety of STEM and non-STEM contexts

    Integration of RCR and Ethics Education into Course-Based Undergraduate Research Experiences in the Biological Sciences: A Needed Discussion

    Full text link
    Course-based undergraduate research experiences (CUREs) have been identified as a promising vehicle to broaden novices’ participation in authentic scientific opportunities. While recent studies in the bioeducation literature have focused on the influence of CUREs on cognitive and non-cognitive student outcomes (e.g., attitudes and motivation, science process skills development), few investigations have examined the extent to which the contextual features inherent in such experiences affect students’ academic and professional growth. Central among these factors is that of ethics and the responsible conduct of research (RCR)—essential cornerstones of the scientific enterprise. In this article, we examine the intersectionality of ethics/RCR instruction within CURE contexts through a critical review of existing literature that details mechanisms for the integration of ethics/RCR education into undergraduate laboratory experiences in the science domains. Building upon this foundation, we propose a novel, evidence-based framework that seeks to illustrate posited interactions between core ethics/RCR principles and unique dimensions of CUREs. It is our intent that this framework will inform and encourage open dialogue around an oftenoverlooked aspect of CURE instruction—how to best prepare ethically responsible scholars for entrance into the global scientific workforce

    SLIMMER (FHL1B/KyoT3) Interacts with the Proapoptotic Protein Siva-1 (CD27BP) and Delays Skeletal Myoblast Apoptosis*

    Full text link
    The fhl1 gene encoding four-and-a-half LIM protein-1 (FHL1) and its spliced isoform, SLIMMER, is mutated in reducing body myopathy, X-linked myopathy with postural muscle atrophy, scapuloperoneal myopathy, and rigid spine syndrome. In this study we have identified a novel function for SLIMMER in delaying skeletal muscle apoptosis via an interaction with the proapoptotic protein Siva-1. Siva-1 was identified as a SLIMMER-specific-interacting protein using yeast two-hybrid screening, direct-binding studies, and glutathione S-transferase pulldown analysis of murine skeletal muscle lysates. In C2C12 skeletal myoblasts, SLIMMER and Siva co-localized in the nucleus; however, both proteins exhibited redistribution to the cytoplasm following the differentiation of mononucleated myoblasts to multinucleated myotubes. In sections of mature skeletal muscle from wild type mice, SLIMMER and Siva-1 co-localized at the Z-line. SLIMMER and Siva-1 were also enriched in Pax-7-positive satellite cells, muscle stem cells that facilitate repair and regeneration. Significantly, SLIMMER delayed Siva-1-dependent apoptosis in C2C12 myoblasts. In skeletal muscle sections from the mdx mouse model of Duchenne muscular dystrophy, SLIMMER and Siva-1 co-localized in the nucleus of apoptotic myofibers. Therefore, SLIMMER may protect skeletal muscle from apoptosis
    corecore