48 research outputs found

    Imagery-mediated verbal learning depends on vividness鈥揻amiliarity interactions: The possible role of dualistic resting state network activity interference

    Get PDF
    Using secondary database analysis, we tested whether the (implicit) familiarity of eliciting noun-cues and the (explicit) vividness of corresponding imagery exerted additive or interactive influences on verbal learning, as measured by the probability of incidental noun recall and image latency times (RTs). Noun-cues with incongruent levels of vividness and familiarity (high/low; low/high, respectively) at encoding were subsequently associated at retrieval with the lowest recall probabilities, while noun-cues related with congruent levels (high/high; low/low) were associated with higher recall probabilities. RTs in the high vividness and high familiarity grouping were significantly faster than all other subsets (low/low, low/high, high/low) which did not significantly differ among each other. The findings contradict: (1) associative theories predicting positive monotonic relationships between memory strength and learning; and (2) non-monotonic plasticity hypothesis (NMPH), aiming at generalizing the non-monotonic relationship between a neuron鈥檚 excitation level and its synaptic strength to broad neural networks. We propose a dualistic neuropsychological model of memory consolidation that mimics the global activity in two large resting-state networks (RSNs), the default mode network (DMN) and the task-positive-network (TPN). Based on this model, we suggest that incongruence and congruence between vividness and familiarity reflect, respectively, competition and synergy between DMN and TPN activity. We argue that competition or synergy between these RSNs at the time of stimulus encoding disproportionately influences long term semantic memory consolidation in healthy controls. These findings could assist in developing neurophenomenological markers of core memory deficits currently hypothesized to be shared across multiple psychopathological conditions

    Retooling computational techniques for EEG-based neurocognitive modeling of children's data, validity and prospects for learning and education

    Get PDF
    This paper describes continuing research on the building of neurocognitive models of the internal mental and brain processes of children using a novel adapted combination of existing computational approaches and tools, and using electro-encephalographic (EEG) data to validate the models. The guiding working model which was pragmatically selected for investigation was the established and widely used Adaptive Control of Thought-Rational (ACT-R) modeling architecture from cognitive science. The anatomo-functional circuitry covered by ACT-R is validated by MRI-based neuroscience research. The present experimental data was obtained from a cognitive neuropsychology study involving preschool children (aged 46), which measured their visual selective attention and word comprehension behaviors. The collection and analysis of Event-Related Potentials (ERPs) from the EEG data allowed for the identification of sources of electrical activity known as dipoles within the cortex, using a combination of computational tools (Independent Component Analysis, FASTICA; EEG-Lab DIPFIT). The results were then used to build neurocognitive models based on Python ACT-R such that the patterns and the timings of the measured EEG could be reproduced as simplified symbolic representations of spikes, built through simplified electric-field simulations. The models simulated ultimately accounted for more than three-quarters of variations spatially and temporally in all electrical potential measurements (fit of model to dipole data expressed as R 2 ranged between 0.75 and 0.98; P < 0.0001). Implications for practical uses of the present work are discussed for learning and educational applications in non-clinical and special needs children's populations, and for the possible use of non-experts (teachers and parents)

    Evaluating preschool visual attentional selective-set: Preliminary erp modeling and simulation of target enhancement homology

    Get PDF
    We reanalyzed, modeled and simulated Event-Related Potential (ERP) data from 13 healthy children (Mean age = 5.12, Standard Deviation = 0.75) during a computerized visual sustained target detection task. Extending an ERP-based ACT鈥揜 (Adaptive Control of Thought鈥揜ational) neurocognitive modeling approach, we tested whether visual sustained selective-set attention in preschool children involves the enhancement of neural response to targets, and it shows key adult-like features (neurofunctional homology). Blinded automatic peaks analysis was conducted on vincentized binned grand ERP averages. Time-course and distribution of scalp activity were detailed through topographic mapping and paths analysis. Reaction times and accuracy were also measured. Adult Magnetic Resonance Imaging-based mapping using ACT鈥揜 dipole source modeling and electric-field spiking simulation provided very good fit with the actual ERP data (R2 > 0.70). In most electrodes, between 50 and 400 ms, ERPs concurrent with target presentation were enhanced relative to distractor, without manual response confounds. Triangulation of peak analysis, ACT鈥揜 modeling and simulation for the entire ERP epochs up to the moment of manual response (~700 ms, on average) suggested converging evidence of distinct but interacting processes of enhancement and planning for response release/inhibition, respectively. The latter involved functions and structures consistent with adult ERP activity which might correspond to a large-scale network, implicating Dorsal and Ventral Attentional Networks, corticostriatal loops, and subcortical hubs connected to prefrontal cortex top-down working memory executive control. Although preliminary, the present approach suggests novel directions for further tests and falsifiable hypotheses on the origins and development of visual selective attention and their ERP correlates

    Neural correlates of visualizations of concrete and abstract words in preschool children: A developmental embodied approach

    Get PDF
    The neural correlates of visualization underlying word comprehension were examined in preschool children. On each trial, a concrete or abstract word was delivered binaurally (part 1: post-auditory visualization), followed by a four-picture array (a target plus three distractors; part 2: matching visualization). Children were to select the picture matching the word they heard in part 1. Event-related potentials (ERPs) locked to each stimulus presentation and task interval were averaged over sets of trials of increasing word abstractness. ERP time-course during both parts of the task showed that early activity (i.e., <300 ms) was predominant in response to concrete words, while activity in response to abstract words became evident only at intermediate (i.e., 300-699 ms) and late (i.e., 700-1000 ms) ERP intervals. Specifically, ERP topography showed that while early activity during post-auditory visualization was linked to left temporo-parietal areas for concrete words, early activity during matching visualization occurred mostly in occipito-parietal areas for concrete words, but more anteriorly in centro-parietal areas for abstract words. In intermediate ERPs, post-auditory visualization coincided with parieto- occipital and parieto-frontal activity in response to both concrete and abstract words, while in matching visualization a parieto-central activity was common to both types of words. In the late ERPs for both types of words, the post-auditory visualization involved right-hemispheric activity following a "post-anterior" pathway sequence: occipital, parietal, and temporal areas; conversely, matching visualization involved left-hemispheric activity following an "ant-posterior" pathway sequence: frontal, temporal, parietal, and occipital areas. These results suggest that, similarly, for concrete and abstract words, meaning in young children depends on variably complex visualization processes integrating visuo-auditory experiences and supramodal embodying representations

    Air pollution and detrimental effects on children's brain. The need for a multidisciplinary approach to the issue complexity and challenges

    Get PDF
    Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier (BBB) breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health

    How neuroendocrinology can contribute to early childhood education and care: Cortisol as a supplementary indicator of quality

    No full text
    How to measure quality of early childhood education and care is an evergreen topic of research and discussion in various disciplines. Here, we propose a contribution from developmental neuroscience and neuroendocrinology. In this secondary data analysis study, we tested the hypothesis that salivary cortisol can serve as a reliable objective indicator of early childhood education quality. As measured by the Early Childhood Environment Rating Scale-Revised (ECERS-R), our analysis confirmed early childhood education and care differences between the two communities in our study. Also, ratifying previous studies in the literature, our results showed that, as daycare quality increased, cortisol levels decreased in children and early childhood educators in both communities. Regardless of the community, the quality difference was slight to moderate, yet it was reflected by a significant difference in aggregate cortisol levels鈥攊ndicating that the sensitivity of the latter measure could serve as a very useful and convenient population-level indicator of childcare quality and early learning from early infancy to school age

    Enhanced tactile encoding and memory recognition in congenital blindness

    No full text
    Several behavioural studies have shown that early-blind persons possess superior tactile skills. Since neurophysiological data show that early-blind persons recruit visual as well as somatosensory cortex to carry out tactile processing (cross-modal plasticity), blind persons' sharper tactile skills may be related to cortical re-organisation resulting from loss of vision early in their life. To examine the nature of blind individuals' tactile superiority and its implications for cross-modal plasticity, we compared the tactile performance of congenitally totally blind, low-vision and sighted children on raised-line picture identification test and re-test, assessing effects of task familiarity, exploratory strategy and memory recognition. What distinguished the blind from the other children was higher memory recognition and higher tactile encoding associated with efficient exploration. These results suggest that enhanced perceptual encoding and recognition memory may be two cognitive correlates of cross-modal plasticity in congenital blindness

    The relationship between self-reported vividness and latency during mental size scaling of everyday items: Phenomenological evidence of different types of imagery

    No full text
    We examined how the relationship between ratings of vividness (or image strength) and image latency might reflect the concerted action of two visual imagery pathways hypothesized by Kosslyn (1994) : the ventral pathway, processing object properties, and the dorsal pathway, processing locative properties of mental images. Participants formed their images at small or large angular display sizes, varying the amount of size scaling needed. In Experiment 1, display size varied between participants, and images were trial unique. The higher the vividness, the faster the generation of small images (requiring size scaling of less than 10掳), which would recruit mainly the ventral pathway. This vivid-is-fast relationship changed for large images (requiring size scaling of 10掳 or more), which would recruit mainly the dorsal pathway. The size-dependent alteration of the vivid-is-fast relationship was replicated in the first block of Experiment 2. However, when repeated over 3 consecutive blocks, image generation sped up, and gradually the vivid-is-fast relationship tended to occur for all display sizes until complete automatization of image generation occurred. The findings suggest that differential patterns of vividness-latency relationship can reflect the types of images involved, their relative ventral and dorsal contributions, and the involvement of working memory

    The depiction of car light beams in a child born completely blind

    No full text
    A 12-year-old child (DI) who was completely blind from birth, made a series of tactual (raised-lines) drawings of cars. Among them, there was the depiction of a 'fast car at night' in which DI drew beams of light projecting out of the car. We analyse this drawing, and the preceding ones. We argue that the way in which cars and light beams were depicted by DI cannot be fully and solely explained by graphic imprecision, executive or motor deficiencies, or by rote or verbal learning. Instead, we propose that the most plausible explanation is that DI's depiction of light in a fast car at night reflects the child's na茂ve knowledge of light propagation, and that this knowledge was gained through perceiving light as radiant heat
    corecore