1 research outputs found

    Diminished trk A receptor signaling reveals cholinergic‐attentional vulnerability of aging

    Full text link
    The cellular mechanisms underlying the exceptional vulnerability of the basal forebrain ( BF ) cholinergic neurons during pathological aging have remained elusive. Here we employed an adeno‐associated viral vector‐based RNA interference ( AAV ‐ RNA i) strategy to suppress the expression of tropomyosin‐related kinase A (trk A ) receptors by cholinergic neurons in the nucleus basalis of M eynert/substantia innominata ( nMB / SI ) of adult and aged rats. Suppression of trk A receptor expression impaired attentional performance selectively in aged rats. Performance correlated with trk A levels in the nMB / SI . trk A knockdown neither affected nMB / SI cholinergic cell counts nor the decrease in cholinergic cell size observed in aged rats. However, trk A suppression augmented an age‐related decrease in the density of cortical cholinergic processes and attenuated the capacity of cholinergic neurons to release acetylcholine ( AC h). The capacity of cortical synapses to release AC h in vivo was also lower in aged/trk A ‐ AAV ‐infused rats than in aged or young controls, and it correlated with their attentional performance. Furthermore, age‐related increases in cortical pro NGF and p75 receptor levels interacted with the vector‐induced loss of trk A receptors to shift NGF signaling toward p75‐mediated suppression of the cholinergic phenotype, thereby attenuating cholinergic function and impairing attentional performance. These effects model the abnormal trophic regulation of cholinergic neurons and cognitive impairments in patients with early A lzheimer's disease. This rat model is useful for identifying the mechanisms rendering aging cholinergic neurons vulnerable as well as for studying the neuropathological mechanisms that are triggered by disrupted trophic signaling. The cellular mechanisms underlying the exceptional vulnerability of the basal forebrain ( BF ) cholinergic neurons during pathological aging have remained elusive. Here we employed an adeno‐associated viral vector‐based RNA interference ( AAV ‐ RNA i) strategy to suppress the expression of trk A receptors by cholinergic neurons in the nucleus basalis of M eynert/substantia innominata (n MB / SI ) of adult and aged rats. This study provides novel evidence that reduced trkA receptors is not sufficient to trigger cholinergic dysfunction. Rather, aging interacts with disrupted trkA signaling to escalate the vulnerability of BF cholinergic neurons and the manifestation of age‐related attentional impairments.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96365/1/ejn12090-sup-0001-SupportingInformation.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96365/2/ejn12090.pd
    corecore