8 research outputs found

    Rapid profiling of the antigen regions recognized by serum antibodies using massively parallel sequencing of antigen-specific libraries

    No full text
    There is a need for techniques capable of identifying the antigenic epitopes targeted by polyclonal antibody responses during deliberate or natural immunization. Although successful, traditional phage library screening is laborious and can map only some of the epitopes. To accelerate and improve epitope identification, we have employed massive sequencing of phage-displayed antigen-specific libraries using the Illumina MiSeq platform. This enabled us to precisely identify the regions of a model antigen, the meningococcal NadA virulence factor, targeted by serum antibodies in vaccinated individuals and to rank hundreds of antigenic fragments according to their immunoreactivity. We found that next generation sequencing can significantly empower the analysis of antigen-specific libraries by allowing simultaneous processing of dozens of library/serum combinations in less than two days, including the time required for antibody-mediated library selection. Moreover, compared with traditional plaque picking, the new technology (named Phage-based Representation OF Immuno-Ligand Epitope Repertoire or PROFILER) provides superior resolution in epitope identification. PROFILER seems ideally suited to streamline and guide rational antigen design, adjuvant selection, and quality control of newly produced vaccines. Furthermore, this method is also susceptible to find important applications in other fields covered by traditional quantitative serology

    Enrichment of phage clones predicted to display authentic NadA fragments on their surface after selection with a serum pool from volunteers immunized with the Bexero vaccine.

    No full text
    <p>Frequency values reported in the vertical axis in panels A–C refer to the occurrence, per single amino acid position, of sequences predicted to express authentic NadA fragments, relative to those predicted to express irrelevant or no polypeptides. The inset in figure A reports the same data with a higher y-axis magnification. The horizontal axis reports the amino acid positions of the translated NadA sequence. A, unselected library; B and C, library outputs after one and two rounds of selection, respectively. D, Cumulative enrichment factors for each amino acid position derived from NadA fragments obtained after one (blue line) and two (red line) rounds of selection; colored bars in the horizontal axis refer to NadA domains; the area between the dashed vertical lines correspond to the cell binding region of NadA <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0114159#pone.0114159-Tavano1" target="_blank">[18]</a>. E and F, enrichment factors of NadA fragments after one and two rounds of selection, respectively. Only the fragments laying in the upper quartile of enrichment factors values are shown.</p

    Properties of the antigen-specific phage library before and after selection with a pool of serum samples from volunteers immunized with the Bexero anti-MenB vaccine.

    No full text
    <p>A–C, abundance of “natural frame” <i>nadA</i> fragments in the library before (A) and after the first and second rounds of selection (B and C, respectively). Each point represents the number of unique fragments (vertical axis) displaying the number of copies indicated in the horizontal axis; D–F, <i>nadA</i> fragment length distribution before (D) and after the first and second rounds of selection (E and F, respectively).</p

    Schematic outline of the epitope mapping approach.

    No full text
    <p>The gene encoding the antigen is fragmented by DNAse digestion and the gene fragments are inserted into lambda phage vectors. The phage library is mixed with immune serum and phage particles binding to immunoglobulins are separated using Protein-G coated magnetic beads. The inserts of the phage population obtained after selection are massively sequenced and compared with those of the original unselected library using an <i>ad hoc</i> developed software which identifies the region(s) of the antigen targeted by serum antibodies.</p

    Targeting the immune microenvironment in Waldenström Macroglobulinemia via halting the CD40/CD40-ligand axis

    No full text
    : Recent investigations have improved our understanding of the molecular aberrations supporting Waldenström Macroglobulinemia (WM) biology; however, whether the immune microenvironment contributes to WM pathogenesis remains unanswered. We first showed how a transgenic murine model of human-like lymphoplasmacytic lymphoma/WM exhibits an increased number of regulatory T (Treg) cells with respect to control mice. These findings were translated into the WM clinical setting, where the transcriptomic profiling of WM patients'-derived regulatory T cells (Tregs) unveiled a peculiar WM-devoted mRNA signature, with significant enrichment for NF-kB-mediated TNF-a signaling-, MAPK-, PI3K/AKT-related genes; paralleled by different Treg functional phenotype. We demonstrated a significantly higher Treg-induction, -expansion and -proliferation triggered by WM cells as compared to their normal cellular counterpart; with a more profound effect within the context of CXCR4C1013G-mutated WM cells. By investigating the B-to-T cell cross-talk at single-cell level, we identified the CD40/CD40-ligand as a potentially relevant axis supporting WM cell-Treg cell interaction. Our findings demonstrate the existence of a Treg-mediated immunosuppressive phenotype in WM, which can be therapeutically reversed by blocking the CD40L/CD40 axis to inhibit WM cell growth
    corecore