18 research outputs found

    A multiscale method for gamma/h discrimination in extensive air showers

    Get PDF
    We present a new method for the identification of extensive air showers initiated by different primaries. The method uses the multiscale concept and is based on the analysis of multifractal behaviour and lacunarity of secondary particle distributions together with a properly designed and trained artificial neural network. The separation technique is particularly suited for being applied when the topology of the particle distribution in the shower front is as largely detailed as possible. Here, our method is discussed and applied to a set of fully simulated vertical showers in the experimental framework of ARGO-YBJ, taking advantage of both the space and time distribution of the detected secondary particles in the shower front, to obtain hadron to gamma primary separation in EAS analysis. We show that the presented approach gives very good results, leading, in the 1-10 Tev energy range, to an improvement of the discrimination power with respect to the existing figures for extended shower detectors. The technique shows up to be very promising and its application may have important astrophysical prospects in different experimental environment of extended air shower study

    Synthesis and characterization of nanocrystalline LaNi5 hydrogen storage materials

    Get PDF
    With the growing environmental concerns of greenhouse gas emissions from the burning of fossil fuels, it is becoming increasingly important to switch to cleaner alternative fuels such as hydrogen [1]. Inter-metallic LaNi5 is one of the most widely used and studied solid-state hydrogen storage material \u2013 a pet material for the prototype systems using hydrogen fuel. However, nanostructuring effects on this systems are not yet fully explored. Recently we have carried out systematic studies regarding the effect of nanostructuring on the hydrogen sorption properties of this material [2]. Unlike some other potential hydrogen storage materials, which shows faster kinetics upon nanostructuring, the long time ball-milling of the bulk LaNi5 results in the formation of an anomalous-state resistant to hydrogen absorption-desorption reactions. In this contribution, we present the preliminary differential scanning calorimetry (DSC), x-ray diffraction (XRD) and x-ray photoemission spectroscopy (XPS) data on the nanostrutured LaNi5 powders. XRD and XPS results indicate the long-time ball-milled and annealed LaNi5 to be of pure nanocrystalline phase. DSC results indicate a partial elimination of defects at 500oC, in a more efficient way for the short-time ball-milled powders compared to the long-time ball-milled samples. These results will be discussed in the light of the hydrogen sorption properties of the bulk and nanocrystalline LaNi5 samples

    Gamma ray flares from Mrk421 in 2008 observed with the ARGO-YBJ detector

    Get PDF
    In 2008 the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at gamma ray energies E > 0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from day 41 to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6) 10^-11 photons cm^-2 s^-1 for energies E > 1 TeV, and decreased afterwards. This paper concentrates on the flares occurred in the first half of June. This period has been deeply studied from optical to 100 MeV gamma rays, and partially up to TeV energies, since the moonlight hampered the Cherenkov telescope observations during the most intense part of the emission. Our data complete these observations, with the detection of a signal with a statistical significance of 3.8 standard deviations on June 11-13, corresponding to a gamma ray flux about 6 times larger than the Crab one above 1 TeV. The reconstructed differential spectrum, corrected for the intergalactic absorption, can be represented by a power law with an index alpha = -2.1 extending up to several TeV. The spectrum slope is fully consistent with previous observations reporting a correlation between the flux and the spectral index, suggesting that this property is maintained in different epochs and characterizes the source emission processes.Comment: Accepted for publication on ApJ

    Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment

    Get PDF
    Cosmic rays are hampered by the Moon and a deficit in its direction is expected (the so-called Moon shadow). The Moon shadow is an important tool to determine the performance of an air shower array. Indeed, the westward displacement of the shadow center, due to the bending effect of the geomagnetic field on the propagation of cosmic rays, allows the setting of the absolute rigidity scale of the primary particles inducing the showers recorded by the detector. In addition, the shape of the shadow permits to determine the detector point spread function, while the position of the deficit at high energies allows the evaluation of its absolute pointing accuracy. In this paper we present the observation of the cosmic ray Moon shadowing effect carried out by the ARGO-YBJ experiment in the multi-TeV energy region with high statistical significance (55 standard deviations). By means of an accurate Monte Carlo simulation of the cosmic rays propagation in the Earth-Moon system, we have studied separately the effect of the geomagnetic field and of the detector point spread function on the observed shadow. The angular resolution as a function of the particle multiplicity and the pointing accuracy have been obtained. The primary energy of detected showers has been estimated by measuring the westward displacement as a function of the particle multiplicity, thus calibrating the relation between shower size and cosmic ray energy. The stability of the detector on a monthly basis has been checked by monitoring the position and the deficit of the Moon shadow. Finally, we have studied with high statistical accuracy the shadowing effect in the ''day/night’’ time looking for possible effect induced by the solar wind

    Highlights from the ARGO-YBJ experiment

    Get PDF
    The ARGO-YBJ experiment at YangBaJing in Tibet (4300 m a.s.l.) has been taking data with its full layout since October 2007. Here we present a few signiïŹcant results obtained in gamma-ray astronomy and cosmic-ray physics. Emphasis is placed on the analysis of gamma-ray emission from point-like sources (Crab Nebula, MRK 421), on the preliminary limit on the antiproton/proton ïŹ‚ux ratio, on the large-scale cosmic-ray anisotropy and on the proton–air cross-section. The performance of the detector is also discussed, and the perspectives of the experiment are outlined

    EUSO-A Space mission searching for Extreme Energy Cosmic Rays and neutrinos

    No full text
    The \u201cExtreme Universe Space Observatory \u2013 EUSO\u201d is an international, multi-agency mission, led by ESA, aimed at measuring from a Low Altitude Earth Orbiting Space Platform the flux and investigating the nature and origin of the charged and neutral particles of the Extreme Energy Cosmic Ray (EECR) with energy above the conventional value (E = 5x10^19 eV) of the Greisen Zatsepin and Kuzmin (GZK) effect EGZK =5x1019 eV). EUSO will pioneer the observation from Space of EECR-induced Extensive Air Showers (EASs), making measurements of the primary energy,arrival direction and possibly composition of the incoming flux by using a sensitive area and target volume far greater than achievable from the ground. Such data will shed light on the origin of EECRs, on their sources , on the propagation environment from the source to Earth on the particle physics mechanisms at energies well beyond the ones achievable in man-made accelerators. We will discuss in this paper the scientific motivations, the observational approach, the experimental set-up and the expected performances of the proposed mission

    I raggi cosmici: cosa sono, da dove provengono, che messaggio portano.

    No full text
    Una pioggia continua di oltre 100 particelle al secondo ci colpisce e ci attraversa, in ogni luogo della Terra, in ogni istante della nostra vita. Si tratta dei raggi cosmici che pervadono l\u2019universo e colpiscono la Terra in modo isotropo (senza alcuna direzione privilegiata) proveniendo dal cosmo, e verosimilmente sia dall\u2019interno che dall\u2019esterno della nostra Galassia. La loro energia \ue8 estremamente variabile, ma pi\uf9 \ue8 grande, meno frequenti essi sono. Essi contengono dei messaggi la cui interpretazione ci consentirebbe di conoscere una grande messe di informazioni sui fenomeni che avvengono nello spazio e che coinvolgono la nascita, la formazione e la morte delle stelle e degli altri corpi celesti. La loro origine, nel senso dei meccanismi che li generano, le loro sorgenti nel cosmo, laloro composizione sono tuttora in larga misura sconosciuti. L\u2019articolo fornisce una breve carrellata sui maggiori interrogativi che la loro osservazione pone, sulle loro principali caratteristiche, sullo stato attuale delle tecniche sperimentali utilizzate per il loro studio, con una breve introduzione storica sulle tappe fondamentali che, dall\u2019inizio dello scorso secolo, hanno scandito la loro osservazione e la comprensione che oggi abbiamo di essi

    EUSO Science

    No full text
    EUSO is a mission to explore the extreme universe by the probe of Ultra High Energy Cosmic Rays (LTHECRs) and LTHE neutrinos [1]. EUSO monitors a gigantic volume of atmosphere from Space and measures showers induced by UHECRs and UHE neutrinos. Scientifically, it is important to measure the energy spectrum of UHECRs well beyond GZK energy with high statistics. EUSO ensures the observation of UHECRs up to 10(21) eV even in the case of GZK mechanism working [2-7], and gives us a clear picture of the existence / non-existence of the GZK effect and the behavior of the spectrum beyond GZK energy, which represents the contributions from nearby sources. The anisotropy study of UHECR arrival directions in a small scale angle above GZK energy may allow us to identify individual source, because of the limited propagation distance and the high rigidity of particles. If event clusters observed by AGASA are real, it is expected from Monte Carlo simulation that EUSO will see similar to 100 particles from individual brightest sources and will give us a good opportunity to test the relativity in high precision. The UHE neutrino is a unique channel to explore the universe much deeper than UHECRs. EUSO essentially can measure URE neutrinos free from background proton showers. The number of GZK neutrino events in a EUSO three years' mission is expected to be only a few. Nevertheless, it is a definitely conceivable opportunity to begin UHE neutrino astrophysics at GZK energy

    Local structure of ball-milled LaNi5 hydrogen storage material by Ni K-edge EXAFS

    No full text
    Local structure of the nanostructured LaNi5 hydrogen storage alloys, prepared by ball-milling, has been studied using Ni K-edge extended X-ray absorption fine structure spectroscopy. Results indicate that the ball-milling up to 100 h results in the production of nanoparticles characterized by large atomic disorder and slightly reduced unit-cell volume, compared to the bulk LaNi5. High temperature annealing appears to help in partial recovery of atomic order in the ball-milled samples; however, longtime ball-milled samples retain large disorder even after the high temperature annealing. The results suggest that the large disorder and the reduced unit-cell volume might be causing a higher energybarrier for the hydride-phase formation in the long time ball-milled LaNi5 powders
    corecore