48 research outputs found
Hospital Organization and Importance of an Interventional Radiology Inpatient Admitting Service:Italian Single-Center 3-year Experience
In June 2005 a Complex Operating Unit of
Interventional Radiology (COUIR), consisting of an outpatient
visit service, an inpatient admitting service with
four beds, and a day-hospital service with four beds was
installed at our department. Between June 2005 and May
2008, 1772 and 861 well-screened elective patients were
admitted to the inpatient ward of the COUIR and to the
Internal Medicine Unit (IMU) or Surgery Unit (SU) of our
hospital, respectively, and treated with IR procedures. For
elective patients admitted to the COUIR’s inpatient ward,
hospital stays were significantly shorter and differences
between reimbursements and costs were significantly
higher for almost all IR procedures compared to those for
patients admitted to the IMU and SU (Student’s t-test for
unpaired data, p\0.05). The results of the 3-year activity
show that the activation of a COUIR with an inpatient
admitting service, and the better organization of the patient
pathway that came with it, evidenced more efficient use of
resources, with the possibility for the hospital to save
money and obtain positive margins (differences between
reimbursements and costs). During 3 years of activity, the
inpatient admitting service of our COUIR yielded a positive
difference between reimbursements and effective costs
of €1,009,095.35. The creation of an inpatient IR service
and the admission of well-screened elective patients
allowed short hospitalization times, reduction of waiting
lists, and a positive economic outcome.
Keywords Inpatients Hospitalization Costs
Reimbursement
Millimetric observations with a high-altitude 2.6-m ground based telescope
High atmospheric performances are necessary to ensure efficient sub/millimetre cosmological observations from ground. Low atmospheric components fluctuations along the line of sight are a must for best detector applications.
Such site constraints are attained only at in specific places around the world: highaltitude observatories or, equivalently, polar regions. We are currently involved in
cosmological observations with the MITO project from an Alpine ground station which satisfies such requirements: the Testa Grigia mountain at 3500 m a.s.l., AO—Italy. The Chacaltaya laboratory at 5200 m a.s.l. could also be an appropriate mm-site. One of the goals of MITO is the multifrequency observation of nearby rich clusters of galaxies for measuring the Sunyaev-Zel’dovich effect. Combined S-Z and X-ray measurements yield the Hubble constant and other cosmological information. A dedicated instrument has been designed to minimize spurious contaminations on the signals. The telescope is a 2.6 m Cassegrain with a wobbling subreflector and a 4-band single pixel photometer installed at the focal plane. The bolometric detectors are cooled down to 300 mK by a double stage He3-He4 fridge
Millimetric observations with a high-altitude 2.6-m ground based telescope
High atmospheric performances are necessary to ensure efficient sub/millimetre cosmological observations from ground. Low atmospheric components fluctuations along the line of sight are a must for best detector applications.
Such site constraints are attained only at in specific places around the world: highaltitude observatories or, equivalently, polar regions. We are currently involved in
cosmological observations with the MITO project from an Alpine ground station which satisfies such requirements: the Testa Grigia mountain at 3500 m a.s.l., AO—Italy. The Chacaltaya laboratory at 5200 m a.s.l. could also be an appropriate mm-site. One of the goals of MITO is the multifrequency observation of nearby rich clusters of galaxies for measuring the Sunyaev-Zel’dovich effect. Combined S-Z and X-ray measurements yield the Hubble constant and other cosmological information. A dedicated instrument has been designed to minimize spurious contaminations on the signals. The telescope is a 2.6 m Cassegrain with a wobbling subreflector and a 4-band single pixel photometer installed at the focal plane. The bolometric detectors are cooled down to 300 mK by a double stage He3-He4 fridge
Rituximab Unveils Hypogammaglobulinemia and Immunodeficiency in Children with Autoimmune Cytopenia
BACKGROUND: Rituximab (RTX; anti-CD20 mAb) is a treatment option in children with refractory immune thrombocytopenia, autoimmune hemolytic anemia (AHA), and Evans syndrome (ES). Prevalence and clinical course of RTX-induced hypogammaglobulinemia in these patients are poorly known. OBJECTIVE: To evaluate the prevalence and risk factors for persistent hypogammaglobulinemia (PH) after RTX use. METHODS: Clinical and immunologic data from children treated with RTX for immune thrombocytopenia, AHA, and ES were collected from 16 Italian centers and 1 UK center at pre-RTX time point (0), +6 months, and yearly, up to 4 years post-RTX. Patients with previously diagnosed malignancy or primary immune deficiency (PID) were excluded. RESULTS: We analyzed 53 children treated with RTX for immune thrombocytopenia (n = 36), AHA (n = 13), and ES (n = 4). Median follow-up was 30 months (range, 12-48). Thirty-two percent of patients (17 of 53) experienced PH, defined as IgG levels less than 2 SD for age at last follow-up (>12 months after RTX). Significantly delayed B-cell recovery was observed in children experiencing PH (hazard ratio, 0.55; P < .05), and 6 of 17 (35%) patients had unresolved B-cell lymphopenia at last follow-up. PH was associated with IgA and IgM deficiency, younger age at RTX use (51 vs 116 months; P < .01), a diagnosis of AHA/ES, and better response to RTX. Nine patients with PH (9 of 17 [53%]) were eventually diagnosed with a PID. CONCLUSIONS: Post-RTX PH is a frequent condition in children with autoimmune cytopenia; a sizable proportion of patients with post-RTX PH were eventually diagnosed with a PID. In-depth investigation for PID is therefore recommended in these patients
The AGILE Mission
AGILE is an Italian Space Agency mission dedicated to observing the gamma-ray Universe. The AGILE's very innovative instrumentation for the first time combines a gamma-ray imager (sensitive in the energy range 30 MeV-50 GeV), a hard X-ray imager (sensitive in the range 18-60 keV), a calorimeter (sensitive in the range 350 keV-100 MeV), and an anticoincidence system. AGILE was successfully launched on 2007 April 23 from the Indian base of Sriharikota and was inserted in an equatorial orbit with very low particle background. Aims. AGILE provides crucial data for the study of active galactic nuclei, gamma-ray bursts, pulsars, unidentified gamma-ray sources, galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. Methods. An optimal sky angular positioning (reaching 0.1 degrees in gamma- rays and 1-2 arcmin in hard X-rays) and very large fields of view (2.5 sr and 1 sr, respectively) are obtained by the use of Silicon detectors integrated in a very compact instrument. Results. AGILE surveyed the gamma- ray sky and detected many Galactic and extragalactic sources during the first months of observations. Particular emphasis is given to multifrequency observation programs of extragalactic and galactic objects. Conclusions. AGILE is a successful high-energy gamma-ray mission that reached its nominal scientific performance. The AGILE Cycle-1 pointing program started on 2007 December 1, and is open to the international community through a Guest Observer Program
Data from: The evolution of eggshell cuticle in relation to nesting ecology
Avian eggs are at risk of microbial infection prior to and during incubation. A large number of defence mechanisms have evolved in response to the severe costs imposed by these infections. The eggshell's cuticle is an important component of antimicrobial defence, and its role in preventing contamination by microorganisms in domestic chickens is well known. Nanometer-scale cuticular spheres that reduce microbial attachment and penetration have recently been identified on eggs of several wild avian species. However, whether these spheres have evolved specifically for antimicrobial defence is unknown. Here, we use comparative data on eggshell cuticular structure and nesting ecology to test the hypothesis that birds nesting in habitats with higher risk of infection (e.g. wetter and warmer) are more likely to evolve cuticular nanospheres on their eggshells than those nesting in less risky habitats. We found that nanostructuring, present in 54 of 296 analysed species, is the ancestral condition of avian eggshells and has been retained more often in taxa that nest in humid infection-prone environments, suggesting that they serve critical roles in antimicrobial egg defence
Data D'Alba et al. JAV 2017
Data on feather microstructure and properties of eiderdown used in D'Alba et al. 201
The evolution of eggshell cuticle in relation to nesting ecology
Avian eggs are at risk of microbial infection prior to and during incubation. A large number of defence mechanisms have evolved in response to the severe costs imposed by these infections. The eggshell's cuticle is an important component of antimicrobial defence, and its role in preventing contamination by microorganisms in domestic chickens is well known. Nanometer-scale cuticular spheres that reduce microbial attachment and penetration have recently been identified on eggs of several wild avian species. However, whether these spheres have evolved specifically for antimicrobial defence is unknown. Here, we use comparative data on eggshell cuticular structure and nesting ecology to test the hypothesis that birds nesting in habitats with higher risk of infection (e.g. wetter and warmer) are more likely to evolve cuticular nanospheres on their eggshells than those nesting in less risky habitats. We found that nanostructuring, present in 54 of 296 analysed species, is the ancestral condition of avian eggshells and has been retained more often in taxa that nest in humid infection-prone environments, suggesting that they serve critical roles in antimicrobial egg defence