461 research outputs found
Development of Lumped Element Kinetic Inductance Detectors for the W-Band
We are developing a Lumped Element Kinetic Inductance Detector (LEKID) array
able to operate in the W-band (75-110 GHz) in order to perform ground-based
Cosmic Microwave Background (CMB) and mm-wave astronomical observations. The
W-band is close to optimal in terms of contamination of the CMB from Galactic
synchrotron, free-free, and thermal interstellar dust. In this band, the
atmosphere has very good transparency, allowing interesting ground-based
observations with large (>30 m) telescopes, achieving high angular resolution
(<0.4 arcmin). In this work we describe the startup measurements devoted to the
optimization of a W-band camera/spectrometer prototype for large aperture
telescopes like the 64 m SRT (Sardinia Radio Telescope). In the process of
selecting the best superconducting film for the LEKID, we characterized a 40 nm
thick Aluminum 2-pixel array. We measured the minimum frequency able to break
CPs (i.e. ) obtaining
GHz, that corresponds to a critical temperature of 1.31 K. This is not suitable
to cover the entire W-band. For an 80 nm layer the minimum frequency decreases
to 93.2 GHz, which corresponds to a critical temperature of 1.28 K; this value
is still suboptimal for W-band operation. Further increase of the Al film
thickness results in bad performance of the detector. We have thus considered a
Titanium-Aluminum bi-layer (10 nm thick Ti + 25 nm thick Al, already tested in
other laboratories), for which we measured a critical temperature of 820 mK and
a cut-on frequency of 65 GHz: so this solution allows operation in the entire
W-band.Comment: 16th International Workshop on Low Temperature Detectors, Grenoble
20-24 July 2015, Journal of Low Temperature Physics, Accepte
Lumped element kinetic inductance detectors maturity for space-borne instruments in the range between 80 and 180 GHz
This work intends to give the state-of-the-art of our knowledge of the
performance of LEKIDs at millimetre wavelengths (from 80 to 180~GHz). We
evaluate their optical sensitivity under typical background conditions and
their interaction with ionising particles. Two LEKID arrays, originally
designed for ground-based applications and composed of a few hundred pixels
each, operate at a central frequency of 100, and 150~GHz (
about 0.3). Their sensitivities have been characterised in the laboratory using
a dedicated closed-circle 100~mK dilution cryostat and a sky simulator,
allowing for the reproduction of realistic, space-like observation conditions.
The impact of cosmic rays has been evaluated by exposing the LEKID arrays to
alpha particles (Am) and X sources (Cd) with a readout sampling
frequency similar to the ones used for Planck HFI (about 200~Hz), and also with
a high resolution sampling level (up to 2~MHz) in order to better characterise
and interpret the observed glitches. In parallel, we have developed an
analytical model to rescale the results to what would be observed by such a
LEKID array at the second Lagrangian point.Comment: 7 pages, 2 tables, 13 figure
Niobium Silicon alloys for Kinetic Inductance Detectors
We are studying the properties of Niobium Silicon amorphous alloys as a
candidate material for the fabrication of highly sensitive Kinetic Inductance
Detectors (KID), optimized for very low optical loads. As in the case of other
composite materials, the NbSi properties can be changed by varying the relative
amounts of its components. Using a NbSi film with T_c around 1 K we have been
able to obtain the first NbSi resonators, observe an optical response and
acquire a spectrum in the band 50 to 300 GHz. The data taken show that this
material has very high kinetic inductance and normal state surface resistivity.
These properties are ideal for the development of KID. More measurements are
planned to further characterize the NbSi alloy and fully investigate its
potential.Comment: Accepted for publication on Journal of Low Temperature Physics.
Proceedings of the LTD15 conference (Caltech 2013
Bi-layer Kinetic Inductance Detectors for space observations between 80-120 GHz
We have developed Lumped Element Kinetic Inductance Detectors (LEKID)
sensitive in the frequency band from 80 to 120~GHz. In this work, we take
advantage of the so-called proximity effect to reduce the superconducting gap
of Aluminium, otherwise strongly suppressing the LEKID response for frequencies
smaller than 100~GHz. We have designed, produced and optically tested various
fully multiplexed arrays based on multi-layers combinations of Aluminium (Al)
and Titanium (Ti). Their sensitivities have been measured using a dedicated
closed-circle 100 mK dilution cryostat and a sky simulator allowing to
reproduce realistic observation conditions. The spectral response has been
characterised with a Martin-Puplett interferometer up to THz frequencies, and
with a resolution of 3~GHz. We demonstrate that Ti-Al LEKID can reach an
optical sensitivity of about ~ (best pixel), or
~ when averaged over the whole array. The optical
background was set to roughly 0.4~pW per pixel, typical for future space
observatories in this particular band. The performance is close to a
sensitivity of twice the CMB photon noise limit at 100~GHz which drove the
design of the Planck HFI instrument. This figure remains the baseline for the
next generation of millimetre-wave space satellites.Comment: 7 pages, 9 figures, submitted to A&
New application of superconductors: high sensitivity cryogenic light detectors
In this paper we describe the current status of the CALDER project, which is
developing ultra-sensitive light detectors based on superconductors for
cryogenic applications. When we apply an AC current to a superconductor, the
Cooper pairs oscillate and acquire kinetic inductance, that can be measured by
inserting the superconductor in a LC circuit with high merit factor.
Interactions in the superconductor can break the Cooper pairs, causing sizable
variations in the kinetic inductance and, thus, in the response of the LC
circuit. The continuous monitoring of the amplitude and frequency modulation
allows to reconstruct the incident energy with excellent sensitivity. This
concept is at the basis of Kinetic Inductance Detectors (KIDs), that are
characterized by natural aptitude to multiplexed read-out (several sensors can
be tuned to different resonant frequencies and coupled to the same line),
resolution of few eV, stable behavior over a wide temperature range, and ease
in fabrication. We present the results obtained by the CALDER collaboration
with 2x2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the
performances of the first prototypes are already competitive with those of
other commonly used light detectors, and we discuss the strategies for a
further improvement
Characterization of the KID-Based Light Detectors of CALDER
The aim of the Cryogenic wide-Area Light Detectors with Excellent Resolution
(CALDER) project is the development of light detectors with active area of
cm and noise energy resolution smaller than 20 eV RMS,
implementing phonon-mediated kinetic inductance detectors. The detectors are
developed to improve the background suppression in large-mass bolometric
experiments such as CUORE, via the double read-out of the light and the heat
released by particles interacting in the bolometers. In this work, we present
the characterization of the first light detectors developed by CALDER. We
describe the analysis tools to evaluate the resonator parameters (resonant
frequency and quality factors) taking into account simultaneously all the
resonance distortions introduced by the read-out chain (as the feed-line
impedance and its mismatch) and by the power stored in the resonator itself. We
detail the method for the selection of the optimal point for the detector
operation (maximizing the signal-to-noise ratio). Finally, we present the
response of the detector to optical pulses in the energy range of 0-30 keV
High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out
The development of wide-area cryogenic light detectors with good energy
resolution is one of the priorities of next generation bolometric experiments
searching for rare interactions, as the simultaneous read-out of the light and
heat signals enables background suppression through particle identification.
Among the proposed technological approaches for the phonon sensor, the
naturally-multiplexed Kinetic Inductance Detectors (KIDs) stand out for their
excellent intrinsic energy resolution and reproducibility. To satisfy the large
surface requirement (several cm) KIDs are deposited on an insulating
substrate that converts the impinging photons into phonons. A fraction of
phonons is absorbed by the KID, producing a signal proportional to the energy
of the original photons. The potential of this technique was proved by the
CALDER project, that reached a baseline resolution of 1547 eV RMS by
sampling a 22 cm Silicon substrate with 4 Aluminum KIDs. In this
paper we present a prototype of Aluminum KID with improved geometry and quality
factor. The design improvement, as well as the combined analysis of amplitude
and phase signals, allowed to reach a baseline resolution of 824 eV by
sampling the same substrate with a single Aluminum KID
The Organization of the Pig T-Cell Receptor γ (TRG) Locus Provides Insights into the Evolutionary Patterns of the TRG Genes across Cetartiodactyla
The domestic pig (Sus scrofa) is a species representative of the Suina, one of the four suborders within Cetartiodactyla. In this paper, we reported our analysis of the pig TRG locus in comparison with the loci of species representative of the Ruminantia, Tylopoda, and Cetacea suborders. The pig TRG genomic structure reiterates the peculiarity of the organization of Cetartiodactyla loci in TRGC "cassettes", each containing the basic V-J-J-C unit. Eighteen genes arranged in four TRGC cassettes, form the pig TRG locus. All the functional TRG genes were expressed, and the TRGV genes preferentially rearrange with the TRGJ genes within their own cassette, which correlates the diversity of the γ-chain repertoire with the number of cassettes. Among them, the TRGC5, located at the 5' end of the locus, is the only cassette that retains a marked homology with the corresponding TRGC cassettes of all the analyzed species. The preservation of the TRGC5 cassette for such a long evolutionary time presumes a highly specialized function of its genes, which could be essential for the survival of species. Therefore, the maintenance of this cassette in pigs confirms that it is the most evolutionarily ancient within Cetartiodactyla, and it has undergone a process of duplication to give rise to the other TRGC cassettes in the different artiodactyl species in a lineage-specific manner
- …