142 research outputs found

    Cell resolved, multiparticle model of plastic tissue deformations and morphogenesis

    Get PDF
    We propose a three-dimensional mechanical model of embryonic tissue dynamics. Mechanically coupled adherent cells are represented as particles interconnected with elastic beams which can exert non-central forces and torques. Tissue plasticity is modeled by a stochastic process consisting of a connectivity change (addition or removal of a single link) followed by a complete relaxation to mechanical equilibrium. In particular, we assume that (i) two non-connected, but adjacent particles can form a new link; and (ii) the lifetime of links is reduced by tensile forces. We demonstrate that the proposed model yields a realistic macroscopic elasto-plastic behavior and we establish how microscopic model parameters determine material properties at the macroscopic scale. Based on these results, microscopic parameter values can be inferred from tissue thickness, macroscopic elastic modulus and the magnitude and dynamics of intercellular adhesion forces. In addition to their mechanical role, model particles can also act as simulation agents and actively modulate their connectivity according to specific rules. As an example, anisotropic link insertion and removal probabilities can give rise to local cell intercalation and large scale convergent extension movements. The proposed stochastic simulation of cell activities yields fluctuating tissue movements which exhibit the same autocorrelation properties as empirical data from avian embryos

    Collective cell streams in epithelial monolayers depend on cell adhesion

    Get PDF
    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell-cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns

    Culturing of avian embryos for time-lapse imaging

    Get PDF
    Monitoring morphogenetic processes, at high resolution over time, has been a longstanding goal of many developmental cell biologists. It is critical to image cells in their natural environment whenever possible; however imaging many warm-blooded vertebrates, especially mammals, is problematic. At early stages of development, birds are ideal for imaging, since the avian body plan is very similar to that of mammals. We have devised a culturing technique that allows for the acquisition of high-resolution differential interference contrast and epifluorescence images of developing avian embryos in a 4-D (3-D + time) system. The resulting information, from intact embryos, is derived from an area encompassing several millimeters, at micrometer resolution for up to 30 h

    Statistical Mechanics of Canonical-Dissipative Systems and Applications to Swarm Dynamics

    Full text link
    We develop the theory of canonical-dissipative systems, based on the assumption that both the conservative and the dissipative elements of the dynamics are determined by invariants of motion. In this case, known solutions for conservative systems can be used for an extension of the dynamics, which also includes elements such as the take-up/dissipation of energy. This way, a rather complex dynamics can be mapped to an analytically tractable model, while still covering important features of non-equilibrium systems. In our paper, this approach is used to derive a rather general swarm model that considers (a) the energetic conditions of swarming, i.e. for active motion, (b) interactions between the particles based on global couplings. We derive analytical expressions for the non-equilibrium velocity distribution and the mean squared displacement of the swarm. Further, we investigate the influence of different global couplings on the overall behavior of the swarm by means of particle-based computer simulations and compare them with the analytical estimations.Comment: 14 pages incl. 13 figures. v2: misprints in Eq. (40) corrected, ref. updated. For related work see also: http://summa.physik.hu-berlin.de/~frank/active.htm

    A Dynamic Renormalization Group Study of Active Nematics

    Full text link
    We carry out a systematic construction of the coarse-grained dynamical equation of motion for the orientational order parameter for a two-dimensional active nematic, that is a nonequilibrium steady state with uniaxial, apolar orientational order. Using the dynamical renormalization group, we show that the leading nonlinearities in this equation are marginally \textit{irrelevant}. We discover a special limit of parameters in which the equation of motion for the angle field of bears a close relation to the 2d stochastic Burgers equation. We find nevertheless that, unlike for the Burgers problem, the nonlinearity is marginally irrelevant even in this special limit, as a result of of a hidden fluctuation-dissipation relation. 2d active nematics therefore have quasi-long-range order, just like their equilibrium counterpartsComment: 31 pages 6 figure

    Network formation of tissue cells via preferential attraction to elongated structures

    Full text link
    Vascular and non-vascular cells often form an interconnected network in vitro, similar to the early vascular bed of warm blooded embryos. Our time-lapse recordings show that the network forms by extending sprouts, i.e., multicellular linear segments. To explain the emergence of such structures, we propose a simple model of preferential attraction to stretched cells. Numerical simulations reveal that the model evolves into a quasi-stationary pattern containing linear segments, which interconnect above the critical volume fraction of 0.2. In the quasi-stationary state the generation of new branches offset the coarsening driven by surface tension. In agreement with empirical data, the characteristic size of the resulting polygonal pattern is density-independent within a wide range of volume fractions
    corecore