4 research outputs found

    Projecting coral responses to intensifying marine heatwaves under ocean acidification

    Full text link
    Over this century, coral reefs will run the gauntlet of climate change, as marine heatwaves (MHWs) become more intense and frequent, and ocean acidification (OA) progresses. However, we still lack a quantitative assessment of how, and to what degree, OA will moderate the responses of corals to MHWs as they intensify throughout this century. Here, we first projected future MHW intensities for tropical regions under three future greenhouse gas emissions scenario (representative concentration pathways, RCP2.6, RCP4.5 and RCP8.5) for the near-term (2021-2040), mid-century (2041-2060) and late-century (2081-2100). We then combined these MHW intensity projections with a global data set of 1,788 experiments to assess coral attribute performance and survival under the three emissions scenarios for the near-term, mid-century and late-century in the presence and absence of OA. Although warming and OA had predominately additive impacts on the coral responses, the contribution of OA in affecting most coral attributes was minor relative to the dominant role of intensifying MHWs. However, the addition of OA led to greater decreases in photosynthesis and survival under intermediate and unrestricted emissions scenario for the mid- and late-century than if intensifying MHWs were considered as the only driver. These results show that role of OA in modulating coral responses to intensifying MHWs depended on the focal coral attribute and extremity of the scenario examined. Specifically, intensifying MHWs and OA will cause increasing instances of coral bleaching and substantial declines in coral productivity, calcification and survival within the next two decades under the low and intermediate emissions scenario. These projections suggest that corals must rapidly adapt or acclimatize to projected ocean conditions to persist, which is far more likely under a low emissions scenario and with increasing efforts to manage reefs to enhance resilience

    Integrating environmental variability to broaden the research on coral responses to future ocean conditions

    Full text link
    Our understanding of the response of reef-building corals to changes in their physical environment is largely based on laboratory experiments, analysis of long-term field data, and model projections. Experimental data provide unique insights into how organisms respond to variation of environmental drivers. However, an assessment of how well experimental conditions cover the breadth of environmental conditions and variability where corals live successfully is missing. Here, we compiled and analyzed a globally distributed dataset of in-situ seasonal and diurnal variability of key environmental drivers (temperature, pCO2 , and O2 ) critical for the growth and livelihood of reef-building corals. Using a meta-analysis approach, we compared the variability of environmental conditions assayed in coral experimental studies to current and projected conditions in their natural habitats. We found that annual temperature profiles projected for the end of the 21st century were characterized by distributional shifts in temperatures with warmer winters and longer warm periods in the summer, not just peak temperatures. Furthermore, short-term hourly fluctuations of temperature and pCO2 may regularly expose corals to conditions beyond the projected average increases for the end of the 21st century. Coral reef sites varied in the degree of coupling between temperature, pCO2 , and dissolved O2 , which warrants site-specific, differentiated experimental approaches depending on the local hydrography and influence of biological processes on the carbonate system and O2 availability. Our analysis highlights that a large portion of the natural environmental variability at short and long timescales is underexplored in experimental designs, which may provide a path to extend our understanding on the response of corals to global climate change
    corecore