45 research outputs found

    Synteza i właściwości zapachowe tlenowych pochodnych1,5,5-trimetylocykloheksenu

    Get PDF

    Lactones 41. Synthesis and Microbial Hydroxylation of Unsaturated Terpenoid Lactones with p-Menthane Ring Systems

    No full text
    Racemic [(±)-4-isopropyl-1-methyl-7-oxa-cis-bicyclo[4.3.0]non-4-en-8-one] and optically active d,e-unsaturated lactones [(-)-(1R,6R)-4-isopropyl-1-methyl-7-oxabicyclo[4.3.0]non-4-en-8-one and (+)-(1S,6S)-4-isopropyl-1-methyl-7-oxabicyclo[4.3.0] non-4-en-8-one)] with the p-menthane system were obtained and their odoriferous properties were evaluated. Biotransformations of the racemic lactone with three fungal strains: Absidia cylindrospora AM336, Absidia glauca AM177 and Syncephalastrum racemosum AM105, were carried out. Microbial transformations afforded hydroxylactones with the hydroxy group in the allylic position

    Comparative Studies on the Susceptibility of (R)-2,3-Dipalmitoyloxypropylphosphonocholine (DPPnC) and Its Phospholipid Analogues to the Hydrolysis or Ethanolysis Catalyzed by Selected Lipases and Phospholipases

    No full text
    Susceptibility of soybean phosphatidylcholine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and its phosphono analogue (R)-2,3-dipalmitoyloxypropylphosphonocholine (DPPnC) towards selected lipases and phospholipases was compared. The ethanolysis of substrates at sn-1 position was carried out by lipase from Mucor miehei (Lipozyme®) and lipase B from Candida antarctica (Novozym 435) in 95% ethanol at 30 °C, and the hydrolysis with LecitaseTM Ultra was carried out in hexane/water at 50 °C. Hydrolysis at sn-2 position was carried out in isooctane/Tris-HCl/AOT system at 40 °C using phospholipase A2 (PLA2) from porcine pancreas and PLA2 from bovine pancreas or 25 °C using PLA2 from bee venom. Hydrolysis in the polar part of the studied compounds was carried out at 30 °C in acetate buffer/ethyl acetate system using phospholipase D (PLD) from Streptococcus sp. and PLD from white cabbage or in Tris-HCl buffer/methylene chloride system at 35 °C using PLD from Streptomyces chromofuscus. The results showed that the presence of C-P bond between glycerol and phosphoric acid residue in DPPnC increases the rate of enzymatic hydrolysis or ethanolysis of ester bonds at the sn-1 and sn-2 position and decreases the rate of hydrolysis in the polar head of the molecule. The most significant changes in the reaction rates were observed for reaction with PLD from Streptococcus sp. and PLD from Streptomyces chromofuscus that hydrolyzed DPPnC approximately two times slower than DPPC and soybean PC. The lower susceptibility of DPPnC towards enzymatic hydrolysis by phospholipases D gives hope for the possibility of using DPPnC-like phosphonolipids as the carriers of bioactive molecules that, instead of choline, can be bounded with diacylpropylphosphonic acids (DPPnA)

    Comparative Studies on the Susceptibility of (<i>R</i>)-2,3-Dipalmitoyloxypropylphosphonocholine (DPPnC) and Its Phospholipid Analogues to the Hydrolysis or Ethanolysis Catalyzed by Selected Lipases and Phospholipases

    No full text
    Susceptibility of soybean phosphatidylcholine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and its phosphono analogue (R)-2,3-dipalmitoyloxypropylphosphonocholine (DPPnC) towards selected lipases and phospholipases was compared. The ethanolysis of substrates at sn-1 position was carried out by lipase from Mucor miehei (Lipozyme®) and lipase B from Candida antarctica (Novozym 435) in 95% ethanol at 30 °C, and the hydrolysis with LecitaseTM Ultra was carried out in hexane/water at 50 °C. Hydrolysis at sn-2 position was carried out in isooctane/Tris-HCl/AOT system at 40 °C using phospholipase A2 (PLA2) from porcine pancreas and PLA2 from bovine pancreas or 25 °C using PLA2 from bee venom. Hydrolysis in the polar part of the studied compounds was carried out at 30 °C in acetate buffer/ethyl acetate system using phospholipase D (PLD) from Streptococcus sp. and PLD from white cabbage or in Tris-HCl buffer/methylene chloride system at 35 °C using PLD from Streptomyces chromofuscus. The results showed that the presence of C-P bond between glycerol and phosphoric acid residue in DPPnC increases the rate of enzymatic hydrolysis or ethanolysis of ester bonds at the sn-1 and sn-2 position and decreases the rate of hydrolysis in the polar head of the molecule. The most significant changes in the reaction rates were observed for reaction with PLD from Streptococcus sp. and PLD from Streptomyces chromofuscus that hydrolyzed DPPnC approximately two times slower than DPPC and soybean PC. The lower susceptibility of DPPnC towards enzymatic hydrolysis by phospholipases D gives hope for the possibility of using DPPnC-like phosphonolipids as the carriers of bioactive molecules that, instead of choline, can be bounded with diacylpropylphosphonic acids (DPPnA)

    Chemoenzymatic Synthesis of trans-β-Aryl-δ-hydroxy-γ-lactones and Enzymatic Kinetic Resolution of Their Racemic Mixtures

    No full text
    Two novel and convenient routes to obtain enantiomerically enriched trans-β-aryl-δ-hydroxy-γ-lactones 5a–d with potential antifeedant and anticancer activity were developed. In the first method starting from corresponding enantiomers of γ,δ-unsaturated esters 4a–d derived from enzymatically resolved allyl alcohols 1a–d, both enantiomers of hydroxylactones 5a–d were synthesized with high enantiomeric excesses (73%–97%). Configurations of the stereogenic centers of the synthesized compounds were assigned based on the mechanism of acidic lactonization of esters 4a–d in the presence of m-chloroperbenzoic acid (m-CPBA). An alternative method for the production of optically active trans-β-aryl-δ-hydroxy-γ-lactones 5a–d was lipase-catalyzed kinetic resolution of their racemic mixtures by transesterification with vinyl propionate as the acyl donor. The most efficient enzyme in the screening procedure was lipase B from Candida antarctica. Its application on a preparative scale after 6 h afforded unreacted (+)-(4S,5R,6S)-hydroxylactones 5a–d and (+)-(4R,5S,6R)-propionates 6a–d, most of them with high enantiomeric excesses (92%–98%). Resolution of lactone 5d with bulky 1,3-benzodioxol ring provided products with significantly lower optical purity (ee = 89% and 84% for hydroxylactone 5d and propionate 6d, respectively). The elaborated methods give access to both enantiomers of trans-β-aryl-δ-hydroxy-γ-lactones 5a–d with the defined absolute configurations of stereogenic centers, which is crucial requirement for the investigations of relationship: spatial structure–biological activity

    Repellent and Antifeedant Activities of Citral-Derived Lactones against the Peach Potato Aphid

    No full text
    Citral is well known for its antimicrobial, antifungal, and insecticidal activities. Natural sesquiterpene &alpha;-methylenelactones also exhibit a broad spectrum of biological activities. The aim of the study was to explore the effect of structural changes to citral molecules on citral behavior-modifying activity towards Myzus persicae. Specifically, the effects of the introduction of a &gamma;-lactone moiety and methylene groups in &alpha; and &gamma; positions of the lactone ring were investigated. The lactones were obtained in five-step (saturated lactone and &gamma;-methylenelactone) or six-step (&alpha;-methylenelactone and &alpha;,&gamma;-dimethylenelactone) syntheses from citral. The synthetic procedures and physical and spectral data of the lactones are presented. The settling behavior of freely moving aphids in choice and no-choice situations was monitored. The probing behavior of tethered M. persicae using the Electrical Penetration Graph (EPG) technique was also analyzed. Citral appeared a strong repellent and pre-ingestive and ingestive probing deterrent to M. persicae. The incorporation of a lactone moiety caused the loss of the repellent activity. &alpha;-Methylenelactone inhibited aphid settling and probing activities at pre-ingestive and ingestive phases. The saturated &gamma;-lactone and &alpha;,&gamma;-dimethylenelactone were the settling post-ingestive deterrents to M. persicae, which did not affect aphid probing activity. &gamma;-Methylenelactone did not affect aphid behavior

    Lactones. 9. †

    No full text
    corecore