2 research outputs found

    Four New Compact Triply Eclipsing Triples found with Gaia and TESS

    Full text link
    This paper presents a comprehensive analysis of four triply eclipsing triple star systems, namely TIC 88206187, TIC 14839347, TIC 298714297, and TIC 66893949. The four systems with third-body eclipses were found in the TESS lightcurves from among a sample of ~400 matches between known eclipsing binaries and the Gaia DR3 Non-Single Star (NSS; Gaia Collaboration 2022; Pourbaix et al. 2022) solution database. We combined photometric lightcurves, eclipse timing variations, archival spectral energy distributions, and theoretical evolution tracks in a robust photodynamical analysis to determine the orbital and system parameters. The triples have outer periods of 52.9, 85.5, 117, and 471 days, respectively. All dozen stars have masses ≲\lesssim 2.6 M⊙_\odot. The systems are quite flat with mutual inclination angles between the inner and outer orbital planes that are all ≲4∘\lesssim 4^\circ. The outer mass ratios range from 0.39--0.76, consistent with our earlier collection of compact triply eclipsing triples. TIC 88206187 exhibits a fractional radius of the outer tertiary component (rB≡RB/aout)(r_B \equiv R_B/a_{\rm out}) exceeding 0.1 (only the third such system known), and we consider its future evolution. Finally, we compare our photodynamical analysis results and the orbital parameters given in the Gaia DR3 NSS solutions, indicating decent agreement, but with the photodynamical results being more accurate.Comment: 16 pages, 8 figures. Accepted for publication in MNRA

    Newly identified compact hierarchical triple system candidates using Gaia DR3

    Full text link
    Aims. We introduce a novel way to identify new compact hierarchical triple stars by exploiting the huge potential of Gaia DR3 and also its future data releases. We aim to increase the current number of compact hierarchical triples significantly. Methods. We utilize several eclipsing binary catalogs from different sky surveys totaling more than 1 million targets for which we search for Gaia DR3 Non-single Star orbital solutions with periods substantially longer than the eclipsing periods of the binaries. Those solutions in most cases should belong to outer orbits of tertiary stars in those systems. We also try to validate some of our best-suited candidates using TESS eclipse timing variations. Results. We find 403 objects with suitable Gaia orbital solutions of which 27 are already known triple systems. This makes 376 newly identified hierarchical triple system candidates in our sample. We analyze the cumulative probability distribution of the outer orbit eccentricities and find that it is very similar to the ones found by earlier studies based on the observations of the Kepler and OGLE missions. We found measurable non-linear eclipse timing variations or third-body eclipses in the TESS data for 192 objects which we also consider to be confirmed candidates. Out of these, we construct analytical light-travel time effect models for the eclipse timing variations of 22 objects with well-sampled TESS observations. We compare the outer orbital parameters from our solutions with the ones from the Gaia solutions and find that the most reliable orbital parameter is the orbital period, while the values of the other parameters should be used with caution.Comment: 18 pages, 9 figures, 6 tables, Accepted for publication in Astronomy & Astrophysic
    corecore