3 research outputs found
Recommended from our members
Post-launch radiometric calibration of the GOES-16 and GOES-17 Advanced Baseline Imager
The GOES-16 satellite was launched on 19 Nov 2016, and it became operational as the GOES-East satellite on 18 Dec 2017. The GOES-17 satellite was launched on 1 Mar 2018, and it became the GOES-West operational satellite on 12 Feb 2019. The Advanced Baseline Imager (ABI) is one of six instruments onboard GOES-16 and GOES-17. It has 16 multispectral bands in the 0.45 µm to 13.56 µm wavelength range. This study is focused on bands 1–3, 5, and 6, which reside in the solar-reflective region (0.4 µm to 2.5 µm). The five bands used in this work have spatial resolutions of 500 m (band 2), 1000 m (1, 3, and 5), and 2000 m (band 6). The geosynchronous orbit of GOES provides a unique opportunity for the Radiometric Calibration Test Site (RadCaTS), which is an automated facility at Railroad Valley, Nevada, USA. RadCaTS consists of ground-based instruments that measure the surface reflectance and atmosphere throughout the day. It was developed by the Remote Sensing Group of the Wyant College of Optical Sciences at the University of Arizona (UArizona), and it is currently used to monitor such low-Earth orbit (LEO) sensors as Landsat 7 ETM+, Landsat 8 OLI, Terra and Aqua MODIS, Sentinel-2A and -2B MSI, SNPP and NOAA-20 VIIRS, and others. The improved spectral, spatial, and temporal characteristics of ABI create an excellent opportunity to intercompare results obtained from a geosynchronous sensor to those obtained from typical LEO sensors. © 2021 SPIE.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
The University of Arizona's Radiometric Calibration Test Site (RadCaTS): lessons learned after 10 years in operation at Railroad Valley, Nevada
The Radiometric Calibration Test Site (RadCaTS) was developed by the Remote Sensing Group of the Wyant College of Optical Sciences at the University of Arizona in the early 2000s. During the prototyping phase, RadCaTS was used to supplement the in situ data that were routinely collected by on-site personnel using the traditional reflectance-based approach. A data processing methodology was developed, tested, and compared to the reflectance-based results during this stage. The experience gained in this process resulted in the development of radiometrically-stable, all-weather, ground-viewing radiometers (GVRs), the first of which were deployed in 2012. Additional upgrades over the past ten years have included a satellite uplink station, upgraded Cimel CE-318T solar-lunar photometer, and a GVR with linear motion. This work provides an overview of RadCaTS, describes the lessons learned during the past ten years of operation, and also a summary of the radiometric calibration and validation results for such sensors as Landsat 7 ETM+, Landsat 8 and 9 OLI, Terra and Aqua MODIS, SNPP and NOAA-20 VIIRS, Sentinel-2A and -2B MSI, and GOES-16 and -17 ABI. © 2022 SPIE.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]