92 research outputs found

    Automatic regularization by quantization in reducible representations of CCR: Point-form quantum optics with classical sources

    Full text link
    Electromagnetic fields are quantized in manifestly covariant way by means of a class of reducible representations of CCR. Aa(x)A_a(x) transforms as a Hermitian four-vector field in Minkowski four-position space (no change of gauge), but in momentum space it splits into spin-1 massless photons (optics) and two massless scalars (similar to dark matter). Unitary dynamics is given by point-form interaction picture, with minimal-coupling Hamiltonian constructed from fields that are free on the null-cone boundary of the Milne universe. SL(2,C) transformations and dynamics are represented unitarily in positive-norm Hilbert space describing NN four-dimensional oscillators. Vacuum is a Bose-Einstein condensate of the NN-oscillator gas. Both the form of Aa(x)A_a(x) and its transformation properties are determined by an analogue of the twistor equation. The same equation guarantees that the subspace of vacuum states is, as a whole, Poincar\'e invariant. The formalism is tested on quantum fields produced by pointlike classical sources. Photon statistics is well defined even for pointlike charges, with UV/IR regularizations occurring automatically as a consequence of the formalism. The probabilities are not Poissonian but of a R\'enyi type with α=11/N\alpha=1-1/N. The average number of photons occurring in Bremsstrahlung splits into two parts: The one due to acceleration, and the one that remains nonzero even if motion is inertial. Classical Maxwell electrodynamics is reconstructed from coherent-state averaged solutions of Heisenberg equations. Static pointlike charges polarize vacuum and produce effective charge densities and fields whose form is sensitive to both the choice of representation of CCR and the corresponding vacuum state.Comment: 2 eps figures; in v2 notation in Eq. (39) and above Eq. (38) is correcte

    Complete positivity of nonlinear evolution: A case study

    Get PDF
    Simple Hartree-type equations lead to dynamics of a subsystem that is not completely positive in the sense accepted in mathematical literature. In the linear case this would imply that negative probabilities have to appear for some system that contains the subsystem in question. In the nonlinear case this does not happen because the mathematical definition is physically unfitting as shown on a concrete example.Comment: extended version, 3 appendices added (on mixed states, projection postulate, nonlocality), to be published in Phys. Rev.

    Quantum feedback with weak measurements

    Get PDF
    The problem of feedback control of quantum systems by means of weak measurements is investigated in detail. When weak measurements are made on a set of identical quantum systems, the single-system density matrix can be determined to a high degree of accuracy while affecting each system only slightly. If this information is fed back into the systems by coherent operations, the single-system density matrix can be made to undergo an arbitrary nonlinear dynamics, including for example a dynamics governed by a nonlinear Schr\"odinger equation. We investigate the implications of such nonlinear quantum dynamics for various problems in quantum control and quantum information theory, including quantum computation. The nonlinear dynamics induced by weak quantum feedback could be used to create a novel form of quantum chaos in which the time evolution of the single-system wave function depends sensitively on initial conditions.Comment: 11 pages, TeX, replaced to incorporate suggestions of Asher Pere

    On classical models of spin

    Full text link
    The reason for recalling this old paper is the ongoing discussion on the attempts of circumventing certain assumptions leading to the Bell theorem (Hess-Philipp, Accardi). If I correctly understand the intentions of these Authors, the idea is to make use of the following logical loophole inherent in the proof of the Bell theorem: Probabilities of counterfactual events A and A' do not have to coincide with actually measured probabilities if measurements of A and A' disturb each other, or for any other fundamental reason cannot be performed simulaneously. It is generally believed that in the context of classical probability theory (i.e. realistic hidden variables) probabilities of counterfactual events can be identified with those of actually measured events. In the paper I give an explicit counterexample to this belief. The "first variation" on the Aerts model shows that counterfactual and actual problems formulated for the same classical system may be unrelated. In the model the first probability does not violate any classical inequality whereas the second does. Pecularity of the Bell inequality is that on the basis of an in principle unobservable probability one derives probabilities of jointly measurable random variables, the fact additionally obscuring the logical meaning of the construction. The existence of the loophole does not change the fact that I was not able to construct a local model violating the inequality with all the other loopholes eliminated.Comment: published as Found. Phys. Lett. 3 (1992) 24

    Microscopic Foundation of Nonextensive Statistics

    Get PDF
    Combination of the Liouville equation with the q-averaged energy Uq=qU_q = _q leads to a microscopic framework for nonextensive q-thermodynamics. The resulting von Neumann equation is nonlinear: iρ˙=[H,ρq]i\dot\rho=[H,\rho^q]. In spite of its nonlinearity the dynamics is consistent with linear quantum mechanics of pure states. The free energy Fq=UqTSqF_q=U_q-TS_q is a stability function for the dynamics. This implies that q-equilibrium states are dynamically stable. The (microscopic) evolution of ρ\rho is reversible for any q, but for q1q\neq 1 the corresponding macroscopic dynamics is irreversible.Comment: revte

    Noncanonical quantum optics

    Get PDF
    Modification of the right-hand-side of canonical commutation relations (CCR) naturally occurs if one considers a harmonic oscillator with indefinite frequency. Quantization of electromagnetic field by means of such a non-CCR algebra naturally removes the infinite energy of vacuum but still results in a theory which is very similar to quantum electrodynamics. An analysis of perturbation theory shows that the non-canonical theory has an automatically built-in cut-off but requires charge/mass renormalization already at the nonrelativistic level. A simple rule allowing to compare perturbative predictions of canonical and non-canonical theories is given. The notion of a unique vacuum state is replaced by a set of different vacua. Multi-photon states are defined in the standard way but depend on the choice of vacuum. Making a simplified choice of the vacuum state we estimate corrections to atomic lifetimes, probabilities of multiphoton spontaneous and stimulated emission, and the Planck law. The results are practically identical to the standard ones. Two different candidates for a free-field Hamiltonian are compared.Comment: Completely rewritten version of quant-ph/0002003v2. There are overlaps between the papers, but sections on perturbative calculations show the same problem from different sides, therefore quant-ph/0002003v2 is not replace

    Speed dependent polarization correlations in QED and entanglement

    Full text link
    Exact computations of polarizations correlations probabilities are carried out in QED, to the leading order, for initially polarized as well as unpolarized particles. Quite generally they are found to be speed dependent and are in clear violation of Bells inequality of Local Hidden Variables (LHV) theories. This dynamical analysis shows how speed dependent entangled states are generated. These computations, based on QED are expected to lead to new experiments on polarization correlations monitoring speed in the light of Bells theorem. The paper provides a full QED treatment of the dynamics of entanglement.Comment: LaTeX, 14 pages, 2 figures, Corrected typo

    Nonlocal looking equations can make nonlinear quantum dynamics local

    Full text link
    A general method for extending a non-dissipative nonlinear Schr\"odinger and Liouville-von Neumann 1-particle dynamics to an arbitrary number of particles is described. It is shown at a general level that the dynamics so obtained is completely separable, which is the strongest condition one can impose on dynamics of composite systems. It requires that for all initial states (entangled or not) a subsystem not only cannot be influenced by any action undertaken by an observer in a separated system (strong separability), but additionally that the self-consistency condition Tr2ϕ1+2t=ϕ1tTr2Tr_2\circ \phi^t_{1+2}=\phi^t_{1}\circ Tr_2 is fulfilled. It is shown that a correct extension to NN particles involves integro-differential equations which, in spite of their nonlocal appearance, make the theory fully local. As a consequence a much larger class of nonlinearities satisfying the complete separability condition is allowed than has been assumed so far. In particular all nonlinearities of the form F(ψ(x))F(|\psi(x)|) are acceptable. This shows that the locality condition does not single out logarithmic or 1-homeogeneous nonlinearities.Comment: revtex, final version, accepted in Phys.Rev.A (June 1998

    Regularization as quantization in reducible representations of CCR

    Full text link
    A covariant quantization scheme employing reducible representations of canonical commutation relations with positive-definite metric and Hermitian four-potentials is tested on the example of quantum electrodynamic fields produced by a classical current. The scheme implies a modified but very physically looking Hamiltonian. We solve Heisenberg equations of motion and compute photon statistics. Poisson statistics naturally occurs and no infrared divergence is found even for pointlike sources. Classical fields produced by classical sources can be obtained if one computes coherent-state averages of Heisenberg-picture operators. It is shown that the new form of representation automatically smears out pointlike currents. We discuss in detail Poincar\'e covariance of the theory and the role of Bogoliubov transformations for the issue of gauge invariance. The representation we employ is parametrized by a number that is related to R\'enyi's α\alpha. It is shown that the ``Shannon limit" α1\alpha\to 1 plays here a role of correspondence principle with the standard regularized formalism.Comment: minor extensions, version submitted for publicatio

    Stationary Solutions of Liouville Equations for Non-Hamiltonian Systems

    Full text link
    We consider the class of non-Hamiltonian and dissipative statistical systems with distributions that are determined by the Hamiltonian. The distributions are derived analytically as stationary solutions of the Liouville equation for non-Hamiltonian systems. The class of non-Hamiltonian systems can be described by a non-holonomic (non-integrable) constraint: the velocity of the elementary phase volume change is directly proportional to the power of non-potential forces. The coefficient of this proportionality is determined by Hamiltonian. The constant temperature systems, canonical-dissipative systems, and Fermi-Bose classical systems are the special cases of this class of non-Hamiltonian systems.Comment: 22 page
    corecore