52 research outputs found

    Impaired Embryonic Development in Mice Overexpressing the RNA-Binding Protein TIAR

    Get PDF
    TIA-1-related (TIAR) protein is a shuttling RNA-binding protein involved in several steps of RNA metabolism. While in the nucleus TIAR participates to alternative splicing events, in the cytoplasm TIAR acts as a translational repressor on specific transcripts such as those containing AU-Rich Elements (AREs). Due to its ability to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules, TIAR is also involved in the general translational arrest observed in cells exposed to environmental stress. However, the in vivo role of this protein has not been studied so far mainly due to severe embryonic lethality upon tiar invalidation.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Contribution à l'étude des mécanismes d'expression du facteur de nécrose tumorale (TNF) -- Biologie moléculaire

    No full text
    info:eu-repo/semantics/nonPublishe

    Caractérisation et clonage de protéines liant la séquence régulatrice de la traduction du messager du TNF

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Avancées et perspectives de la recherche sur le facteur de nécrose tumorale (TNF)

    No full text
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Transportin-1 and Transportin-2: protein nuclear import and beyond.

    Get PDF
    Nearly 20 years after its identification as a new β-karyopherin mediating the nuclear import of the RNA-binding protein hnRNP A1, Transportin-1 is still commonly overlooked in comparison with its best known cousin, Importin-β. Transportin-1 is nonetheless a considerable player in nucleo-cytoplasmic transport. Over the past few years, significant progress has been made in the characterization of the nuclear localization signals (NLSs) that Transportin-1 recognizes, thereby providing the molecular basis of its diversified repertoire of cargoes. The recent discovery that mutations in the Transportin-dependent NLS of FUS cause mislocalization of this protein and result in amyotrophic lateral sclerosis illustrates the importance of Transportin-dependent import for human health. Besides, new functions of Transportin-1 are emerging in processes other than nuclear import. Here, we summarize what is known about Transportin-1 and the related β-karyopherin Transportin-2.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: re.jinfo:eu-repo/semantics/publishe

    Tumor Necrosis factor: from induction to action

    No full text
    info:eu-repo/semantics/publishe

    Proteome stability, heat hardening, and heat-shock protein expression profiles in Cataglyphis desert ants

    No full text
    In ectotherms, high temperatures impose physical limits, impeding activity. Exposure to high heat levels causes various deleterious and lethal effects, including protein misfolding and denaturation. Thermophilic ectotherms have evolved various ways to increase macromolecular stability and cope with elevated body temperatures; these include the high constitutive expression of molecular chaperones. In this study, we investigated the effect of moderate to severe heat shock (37-45°C) on survival, heat hardening, protein damage and the expression of five heat tolerance-related genes (hsc70-4 h1, hsc70-4 h2, hsp83, hsc70-5 and hsf1) in two closely related Cataglyphis ants that occur in distinct habitats. Our results show that the highly thermophilic Sahara ant Cataglyphis bombycina constitutively expresses HSC70 at higher levels, but has lower induced expression of heat tolerance-related genes in response to heat shock, as compared with the more mesophilic Cataglyphis mauritanica found in the Atlas Mountains. As a result, C. bombycina demonstrates increased protein stability when exposed to acute heat stress but is less disposed to acquiring induced thermotolerance via heat hardening. These results provide further insight into the evolutionary plasticity of the hsp gene expression system and subsequent physiological adaptations in thermophilous desert insects to adapt to harsh environmental conditions.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Plasma membrane changes during programmed cell deaths

    No full text
    Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    AU-rich element-mediated translational control: Complexity and multiple activities of trans-activating factors

    No full text
    Tumour necrosis factor (TNF)-α mRNA contains an AU-rich element (ARE) in its 3′ untranslated region (3′UTR), which determines its half-life and translational efficiency. In unstimulated macrophages, TNF-α mRNA is repressed translationally, and becomes efficiently translated upon cell activation. Gel retardation experiments and screening of a macrophage cDNA expression library with the TNF-α ARE allowed the identification of TIA-1-related protein (TIAR), T-cell intracellular antigen-1 (TIA-1) and tristetraprolin (TTP) as TNF-α ARE-binding proteins. Whereas TIAR and TIA-1 bind the TNF-α ARE independently of the activation state of macrophages, the TTP-ARE complex is detectable upon stimulation with lipopolysaccharide (LPS). Moreover, treatment of LPS-induced macrophage extracts with phosphatase significantly abrogates TTP binding to the TNF-α ARE, indicating that TTP phosphorylation is required for ARE binding. Carballo, Lai and BIackshear [(1998) Science 281, 1001-1005] showed that TTP was a TNF-α mRNA destabilizer. In contrast, TIA-1, and most probably TIAR, acts as a TNF- mRNA translational silencer. A two-hybrid screening with TIAR and TIA-1 revealed the capacity of these proteins to interact with other RNA-binding proteins. Interestingly, TIAR and TIA-1 are not engaged in the same interaction, indicating for the first time that TIAR and TIA-1 can be functionally distinct. These findings also suggest that ARE-binding proteins interact with RNA as multimeric complexes, which might define their function and their sequence specificity.SCOPUS: cp.jinfo:eu-repo/semantics/publishe

    RNA-binding protein-mediated post-transcriptional controls of gene expression: integration of molecular mechanisms at the 3' end of mRNAs?

    No full text
    Initially identified as an occasional and peculiar mode of gene regulation in eukaryotes, RNA-binding protein-mediated post-transcriptional control of gene expression has emerged, over the last two decades, as a major contributor in the control of gene expression. A large variety of RNA-binding proteins (RBPs) allows the recognition of very diverse messenger RNA sequences and participates in the regulation of basically all cellular processes. Nevertheless, the rapid outcome of post-transcriptional regulations on the level of gene expression has favored the expansion of this type of regulation in cellular processes prone to rapid and frequent modulations such as the control of the inflammatory response. At the molecular level, the 3'untranslated region (3'UTR) of mRNA is a favored site of RBP recruitment. RBPs binding to these regions control gene expression through two major modes of regulation, namely mRNA decay and modulation of translational activity. Recent progresses suggest that these two mechanisms are often interdependent and might result one from the other. Therefore, different RBPs binding distinct RNA subsets could share similar modes of action at the molecular level. RBPs are frequent targets of post-translational modifications, thereby disclosing numerous possibilities for pharmacological interventions. However, redundancies of the transduction pathways controlling these modifications have limited the perspectives to define RBPs as new therapeutic targets. Through the analysis of several examples of RBPs binding to 3'Untranslated Region of mRNA, we present here recent progress and perspectives regarding this rapidly evolving field of molecular biology.Journal ArticleSCOPUS: re.jinfo:eu-repo/semantics/publishe
    • …
    corecore