7 research outputs found

    Clinical characteristics and molecular epidemiology of hepatitis E in Shenzhen, China: a shift toward foodborne transmission of hepatitis E virus infection

    No full text
    Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis in China. Recently, a shift in molecular epidemiology from hepatitis E genotype 1 (HEV-1) to hepatitis E genotype 4 (HEV-4) has been observed in Northern China, marking a switch from human-to-human transmission to zoonosis. However, similar data from cities in Southern China are lacking. This observational study of human hepatitis E cases in Shenzhen, a metropolitan city in the Pearl River Delta region, aimed to describe the clinical features and molecular epidemiology of hepatitis E in Southern China. Over a 55-month period, we identified 20 patients with acute hepatitis E. Most were middle-aged men, and 50% of patients had concomitant liver disease, of whom 70% were identified to have non-alcoholic fatty liver disease; such patients had a trend toward higher liver enzymes. Quantitative real-time RT-PCR using archived serum samples showed that 12 patients had hepatitis E viremia at presentation. Sequencing of the RNA-dependent RNA polymerase gene was performed for five of these patients, and phylogenetic analysis revealed that these five HEV isolates belonged to subgenotype 4b and were clustered with swine HEV isolates from Southern China. Combined with other studies showing similar findings, this suggests that the molecular epidemiology of hepatitis E in China is evolving toward low-level endemicity driven by foodborne transmission from seafood or pork products. The importance of concomitant liver disease, in particular non-alcoholic fatty liver disease, as a risk factor for severe hepatitis E requires further study.Emerging Microbes & Infections (2017) 6, e115 doi:10.1038/emi.2017.107; published online 20 December 201

    High diversity of genogroup I picobirnaviruses in mammals

    No full text
    In a molecular epidemiology study using 791 fecal samples collected from different terrestrial and marine mammals in Hong Kong, genogroup I picobirnaviruses (PBVs) were positive by RT-PCR targeting the partial RdRp gene in specimens from 5 cattle, 6 monkeys, 17 horses, 9 pigs, 1 rabbit, 1 dog and 12 California sea lions, with 11, 9, 23, 17, 1, 1 and 15 sequence types in the positive specimens from the corresponding animals, respectively. Phylogenetic analysis showed that the PBV sequences from each kind of animal were widely distributed in the whole tree with high diversity, sharing 47.4 to 89.0% nucleotide identities with other genogroup I PBV strains based on the partial RdRp gene. Nine complete segments 1 (viral loads 1.7×104 to 5.9×106/ml) and 15 segments 2 (viral loads 4.1×103 to 1.3×106/ml) of otarine PBVs from fecal samples serially collected from California sea lions were sequenced. In the two phylogenetic trees constructed using ORF2 and ORF3 of segment 1, the nine segment 1 sequences were clustered into four distinct clades (C1 to C4). In the tree constructed using RdRp gene of segment 2, the 15 segment 2 sequences were clustered into nine distinct clades (R1 to R9). In four sea lions, PBVs were detected in two different years, with the same segment 1 clade (C3) present in two consecutive years from one sea lion and different clades present in different years from three sea lions. A high diversity of PBVs was observed in a variety of terrestrial and marine mammals. Multiple sequence types with significant differences, representing multiple strains of PBV, were present in the majority of PBV-positive samples from different kinds of animals

    Additional molecular testing of saliva specimens improves the detection of respiratory viruses

    No full text
    Emerging infectious diseases in humans are often caused by respiratory viruses such as pandemic or avian influenza viruses and novel coronaviruses. Microbiological testing for respiratory viruses is important for patient management, infection control and epidemiological studies. Nasopharyngeal specimens are frequently tested, but their sensitivity is suboptimal. This study evaluated the incremental benefit of testing respiratory viruses in expectorated saliva using molecular assays. A total of 258 hospitalized adult patients with suspected respiratory infections were included. Their expectorated saliva was collected without the use of any special devices. In the first cohort of 159 patients whose nasopharyngeal aspirates (NPAs) tested positive for respiratory viruses during routine testing, the viral load was measured using quantitative reverse transcription PCR. Seventeen percent of the patients (27/159) had higher viral loads in the saliva than in the NPA. The second cohort consisted of 99 patients whose NPAs tested negative for respiratory viruses using a direct immunofluorescence assay. Their NPA and saliva specimens were additionally tested using multiplex PCR. In these patients, the concordance rate by multiplex PCR between NPA and saliva was 83.8%. Multiplex PCR detected viruses in saliva samples from 16 patients, of which nine (56.3%) had at least one virus that was not detected in the NPA. Decisions on antiviral or isolation precautions would be affected by salivary testing in six patients. Although NPAs have high viral loads and remain the specimen of choice for most patients with respiratory virus infections, supplementary molecular testing of saliva can improve the clinical management of these patients.Emerging Microbes & Infections (2017) 6, e49 doi:10.1038/emi.2017.35; published online 7 June 201
    corecore