134 research outputs found

    Reversible compression of an optical piston through Kramers dynamics

    Full text link
    We study the reversible crossover between stable and bistable phases of an over-damped Brownian bead inside an optical piston. The interaction potentials are solved developing a method based on Kramers' theory that exploits the statistical properties of the stochastic motion of the bead. We evaluate precisely the energy balance of the crossover. We show that the deformation of the optical potentials induced by the compression of the piston is related to a production of heat which measures the non-adiabatic character of the crossover. This reveals how specific thermodynamic processes can be designed and controlled with a high level of precision by tailoring the optical landscapes of the piston.Comment: 9 pages, 9 figure

    The Casimir effect in the nanoworld

    Full text link
    The Casimir effect is a force arising in the macroscopic world as a result of radiation pressure of vacuum fluctuations. It thus plays a key role in the emerging domain of nano-electro-mechanical systems (NEMS). This role is reviewed in the present paper, with discussions of the influence of the material properties of the mirrors, as well as the geometry dependence of the Casimir effect between corrugated mirrors. In particular, the lateral component of the Casimir force and restoring torque between metal plates with misaligned corrugations are evaluated.Comment: 8 pages, 6 figures, contribution to CEWQO 2007 proceeding

    The Casimir force between metallic mirrors

    Full text link
    In order to compare recent experimental results with theoretical predictions we study the influence of finite conductivity of metals on the Casimir effect. The correction to the Casimir force and energy due to imperfect reflection and finite temperature are evaluated for plane metallic plates where the dielectric functions of the metals are modeled by a plasma model. The results are compared with the common approximation where conductivity and thermal corrections are evaluated separately and simply multiplied.Comment: 10 pages, 8 figures, contribution to MG9 proceeding
    corecore