23 research outputs found

    Asthma: an inflammatory mediator soup

    No full text
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldReversible or partially reversible airway obstruction, inflammation, and bronchial hyperresponsiveness to various stimuli are the defining characteristics of asthma. Airway obstruction in asthma is a complex event that is due to bronchospasm, inflammation, and mucus formation. Inflammation has assumed a more central role in the pathogenesis of the disease, as it contributes not only to airflow obstruction, but also to bronchial hyperresponsiveness. The inciting trigger, or inhaled allergen, in asthma induces the activation of mast cells and macrophages with the subsequent release of several proinflammatory mediators, including leukotrienes, chemotactic factors, and cytokines. Antigen processed by macrophages is presented to undifferentiated T helper cells, inducing differentiation to the Th2 phenotype, with the subsequent release of IL-4 and IL-5, causing IgE synthesis and eosinophil infiltration, respectively. Macrophage-derived cytokines, such as IL-1, TNF-alpha, and IFN-gamma, activate endothelial cells, upregulating the expression of adhesion molecules such as ICAM-1 and VCAM-1, which permit egression of leukocytes from the vasculature to the airway mucosa. Several inflammatory cells, such as eosinophils, mast cells, and macrophages, not only cause airway damage, but also synthesize cytokines that perpetuate the inflammatory process. This complex interplay of inflammatory cells and mediators causes the classic histopathophysiologic features in the airways of both symptomatic and asymptomatic individuals with asthma, emphasizing the importance of early recognition and antiinflammatory treatment

    Short-course subcutaneous treatment with PQ Grass strongly improves symptom and medication scores in grass allergy

    No full text
    BACKGROUND: A modified grass allergen subcutaneous immunotherapy (SCIT) product with MicroCrystalline Tyrosine and monophosphoryl lipid-A as an adjuvant system (Grass MATA MPL [PQ Grass]) is being developed as short-course treatment of grass-pollen allergic rhinitis (SAR) and/or rhinoconjunctivitis. We sought to evaluate the combined symptom and medication score (CSMS) of the optimized cumulative dose of 27,600 standardized units (SU) PQ Grass in a field setting prior to embarking on a pivotal Phase III trial. METHODS: In this exploratory, randomized, double-blind, placebo-controlled trial subjects were enrolled across 14 sites (Germany and the United States of America). Six pre-seasonal subcutaneous injections of PQ Grass (using conventional or extended regimens) or placebo were administered to 119 subjects (aged 18-65 years) with moderate-to-severe SAR with or without asthma that was well-controlled. The primary efficacy endpoint was CSMS during peak grass pollen season (GPS). Secondary endpoints included Rhinoconjunctivitis Quality of Life Questionnaire standardized (RQLQ-S) and allergen-specific IgG4 response. RESULTS: The mean CSMS compared to placebo was 33.1% (p = .0325) and 39.5% (p = .0112) for the conventional and extended regimens, respectively. An increase in IgG4 was shown for both regimens (p \u3c .01) as well as an improvement in total RQLQ-S for the extended regimen (mean change -0.72, p = .02). Both regimens were well-tolerated. CONCLUSIONS: This trial demonstrated a clinically relevant and statistically significant efficacy response to PQ Grass. Unprecedented effect sizes were reached for grass allergy of up to ≈40% compared to placebo for CSMS after only six PQ Grass injections. Both PQ Grass regimens were considered equally safe and well-tolerated. Based on enhanced efficacy profile extended regime will be progressed to the pivotal Phase III trial
    corecore