948 research outputs found

    Molecular Gas Content of HI Monsters and Implications to Cold Gas Content Evolution in Galaxies

    Full text link
    We present 12CO (J=1-0) observations of a sample of local galaxies (0.04<z<0.08) with a large neutral hydrogen reservoir, or "HI monsters". The data were obtained using the Redshift Search Receiver on the FCRAO 14 m telescope. The sample consists of 20 HI-massive galaxies with M(HI)>3e10Msun from the ALFALFA survey and 8 LSBs with a comparable M(HI) (>1.5e10Msun). Our sample selection is purely based on the amount of neutral hydrogen, thereby providing a chance to study how atomic and molecular gas relate to each other in these HI-massive systems. We have detected CO in 15 out of 20 ALFALFA selected galaxies and 4 out of 8 LSBs with molecular gas mass M(H2) of (1-11)e9Msun. Their total cold gas masses of (2-7e10Msun make them some of the most gas-massive galaxies identified to date in the Local Universe. Observed trends associated with HI, H2, and stellar properties of the HI massive galaxies and the field comparison sample are analyzed in the context of theoretical models of galaxy cold gas content and evolution, and the importance of total gas content and improved recipes for handling spatially differentiated behaviors of disk and halo gas are identified as potential areas of improvement for the modeling.Comment: 18 pages, 11 figures, 2 tables; Accepted for publication in MNRA

    Detection of a Substantial Molecular Gas Reservoir in a brightest cluster galaxy at z = 1.7

    Get PDF
    We report the detection of CO(2-1) emission coincident with the brightest cluster galaxy (BCG) of the high-redshift galaxy cluster SpARCS1049+56, with the Redshift Search Receiver (RSR) on the Large Millimetre Telescope (LMT). We confirm a spectroscopic redshift for the gas of z = 1.7091+/-0.0004, which is consistent with the systemic redshift of the cluster galaxies of z = 1.709. The line is well-fit by a single component Gaussian with a RSR resolution-corrected FWHM of 569+/-63 km/s. We see no evidence for multiple velocity components in the gas, as might be expected from the multiple image components seen in near-infrared imaging with the Hubble Space Telescope. We measure the integrated flux of the line to be 3.6+/-0.3 Jy km/s and, using alpha_CO = 0.8 Msun (K km s^-1 pc^2)^-1 we estimate a total molecular gas mass of 1.1+/-0.1x10^11 Msun and a M_H2/M_star ~ 0.4. This is the largest gas reservoir detected in a BCG above z > 1 to date. Given the infrared-estimated star formation rate of 860+/-130 Msun/yr, this corresponds to a gas depletion timescale of ~0.1Gyr. We discuss several possible mechanisms for depositing such a large gas reservoir to the cluster center -- e.g., a cooling flow, a major galaxy-galaxy merger or the stripping of gas from several galaxies -- but conclude that these LMT data are not sufficient to differentiate between them.Comment: accepted for publication in ApJ Letter

    Intermolecular Potential of the Methane Dimer and Trimer

    Get PDF
    The Heitler–London (HL) exchange energy is responsible for the anisotropy of the pair potential in methane. The equilibrium dimer structure is that which minimizes steric repulsion between hydrogens belonging to opposite subsystems. Dispersion energy, which represents a dominating attractive contribution, displays an orientation dependence which is the mirror image of that for HL exchange. The three‐body correction to the pair potential is a superposition of HL and second‐order exchange nonadditivities combined with the Axilrod–Teller dispersion nonadditivity. A great deal of cancellation between these terms results in near additivity of methane interactions in the long and intermediate regions

    Molecular vibration in cold collision theory

    Full text link
    Cold collisions of ground state oxygen molecules with Helium have been investigated in a wide range of cold collision energies (from 1 μ\muK up to 10 K) treating the oxygen molecule first as a rigid rotor and then introducing the vibrational degree of freedom. The comparison between the two models shows that at low energies the rigid rotor approximation is very accurate and able to describe all the dynamical features of the system. The comparison between the two models has also been extended to cases where the interaction potential He - O2_2 is made artificially stronger. In this case vibration can perturb rate constants, but fine-tuning the rigid rotor potential can alleviate the discrepancies between the two models.Comment: 11 pages, 3 figure

    Entropic Uncertainty Relations in Quantum Physics

    Full text link
    Uncertainty relations have become the trademark of quantum theory since they were formulated by Bohr and Heisenberg. This review covers various generalizations and extensions of the uncertainty relations in quantum theory that involve the R\'enyi and the Shannon entropies. The advantages of these entropic uncertainty relations are pointed out and their more direct connection to the observed phenomena is emphasized. Several remaining open problems are mentionedComment: 35 pages, review pape
    corecore