2 research outputs found
Evolving Convolutional Neural Networks for Glaucoma Diagnosis / Redes neurais convolucionais em evolução para diagnóstico de glaucoma
O glaucoma é uma doença ocular que causa danos ao nervo óptico do olho e sucessivo estreitamento do campo visual nos pacientes afetados, o que pode levar o paciente, em estágio avançado, à cegueira. Este trabalho apresenta um estudo sobre o uso de Redes Neurais Convolucionais (CNNs) para o diagnóstico automático através de imagens de fundo de olho. No entanto, a construção de uma CNN capaz de alcançar resultados satisfatórios para o diagnóstico do glaucoma, envolve muito esforço que, em muitas situações, nem sempre é capaz de tais resultados. O objetivo deste trabalho é utilizar um algoritmo genético (AG) para otimizar arquiteturas de CNNs através da técnica de evolução de algoritmos que possa aprimorar o diagnóstico do glaucoma em imagens de fundo do olho do conjunto de dados RIM-ONE-r2. Nosso artigo demonstra resultados satisfatórios após o treinamento do melhor indivíduo escolhido pelo AG, com a obtenção de uma acurácia de 91%
Reconhecimento de ações judiciais relacionadas ao consumo de energia não registrado utilizando engenharia de características de relacionamento temporalizadas e rede LSTM/ Recognition of lawsuits related to unregistered energy consumption using temporalized relationship characteristics engineering and LSTM network
O grande número de ações judiciais contra empresas de distribuição de energia destaca o difícil problema de identificar e solucionar falhas de serviços neste setor. Este trabalho propõe uma metodologia para identificar novas ações judiciais no setor de energia baseado em informações do relacionamento cliente com a companhia, além da identificação de fatores correlacionados. A metodologia é basicamente dividida em 4 etapas: (a) aquisição de dados; (b) engenharia de características; (c) seleção de características; e (d) classificação usando LSTM. O método foi realizado em um banco de dados com mais de cinquenta mil consumidores e mostra-se robusto na tarefa de identificar a predição de ações judiciais de consumo de energia não registrada por meio de uma acurácia de 92,89%; especificidade de 94,27%; sensibilidade de 88,79%; e precisão de 83,84%. Assim, demonstra-se a viabilidade de usar o LSTM para resolver o problema da predição de processos judiciais de consumo de energia não registrados