102 research outputs found

    The Physiological Function of von Willebrand's Factor Depends on Its Tubular Storage in Endothelial Weibel-Palade Bodies

    Get PDF
    SummaryWeibel-Palade bodies are the 1–5 μm long rod-shaped storage organelles of endothelial cells. We have investigated the determinants and functional significance of this shape. We find that the folding of the hemostatic protein von Willebrand's factor (VWF) into tubules underpins the rod-like shape of Weibel-Palade bodies. Further, while the propeptide and the N-terminal domains of mature VWF are sufficient to form tubules, their maintenance relies on a pH-dependent interaction between the two. We show that the tubular conformation of VWF is essential for a rapid unfurling of 100 μm long, platelet-catching VWF filaments when exposed to neutral pH after exocytosis in cell culture and in living blood vessels. If tubules are disassembled prior to exocytosis, then short or tangled filaments are released and platelet recruitment is reduced. Thus, a 100-fold compaction of VWF into tubules determines the unique shape of Weibel-Palade bodies and is critical to this protein's hemostatic function

    Improving hypertension management through pharmacist prescribing; the rural alberta clinical trial in optimizing hypertension (Rural RxACTION): trial design and methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with hypertension continue to have less than optimal blood pressure control, with nearly one in five Canadian adults having hypertension. Pharmacist prescribing is gaining favor as a potential clinically efficacious and cost-effective means to improve both access and quality of care. With Alberta being the first province in Canada to have independent prescribing by pharmacists, it offers a unique opportunity to evaluate outcomes in patients who are prescribed antihypertensive therapy by pharmacists.</p> <p>Methods</p> <p>The study is a randomized controlled trial of enhanced pharmacist care, with the unit of randomization being the patient. Participants will be randomized to enhanced pharmacist care (patient identification, assessment, education, close follow-up, and prescribing/titration of antihypertensive medications) or usual care. Participants are patients in rural Alberta with undiagnosed/uncontrolled blood pressure, as defined by the Canadian Hypertension Education Program. The primary outcome is the change in systolic blood pressure between baseline and 24 weeks in the enhanced-care versus usual-care arms. There are also three substudies running in conjunction with the project examining different remuneration models, investigating patient knowledge, and assessing health-resource utilization amongst patients in each group.</p> <p>Discussion</p> <p>To date, one-third of the required sample size has been recruited. There are 15 communities and 17 pharmacists actively screening, recruiting, and following patients. This study will provide high-level evidence regarding pharmacist prescribing.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT00878566">NCT00878566</a>.</p

    Human Complement Regulators C4b-Binding Protein and C1 Esterase Inhibitor Interact with a Novel Outer Surface Protein of Borrelia recurrentis

    Get PDF
    The spirochete Borrelia recurrentis is the causal agent of louse-borne relapsing fever and is transmitted to humans by the infected body louse Pediculus humanus. We have recently demonstrated that the B. recurrentis surface receptor, HcpA, specifically binds factor H, the regulator of the alternative pathway of complement activation, thereby inhibiting complement mediated bacteriolysis. Here, we show that B. recurrentis spirochetes express another potential outer membrane lipoprotein, termed CihC, and acquire C4b-binding protein (C4bp) and human C1 esterase inhibitor (C1-Inh), the major inhibitors of the classical and lectin pathway of complement activation. A highly homologous receptor for C4bp was also found in the African tick-borne relapsing fever spirochete B. duttonii. Upon its binding to B. recurrentis or recombinant CihC, C4bp retains its functional potential, i.e. facilitating the factor I-mediated degradation of C4b. The additional finding that ectopic expression of CihC in serum sensitive B. burgdorferi significantly increased spirochetal resistance against human complement suggests this receptor to substantially contribute, together with other known strategies, to immune evasion of B. recurrentis

    Building a Field: The Future of Astronomy with Gravitational Waves

    Get PDF
    Harnessing the sheer discovery potential of GW Astronomy will require bold, deliberate,and sustained efforts to train and develop the requisite workforce. The next decaderequires a strategic plan to build - from the ground up - a robust, open, andwell-connected GW Astronomy community with deep participation from traditionalastronomers, physicists, data scientists, and instrumentalists. This basic infrastructure issorely needed as an enabling foundation for research. We outline a set ofrecommendations for funding agencies, universities, and professional societies to helpbuild a thriving, diverse, and inclusive new field

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    The rise of noncommunicable diseases in Latin America and the Caribbean: challenges for public health policies

    Get PDF
    The health landscape in Latin America and the Caribbean is changing quickly. The region is undergoing a demographic and epidemiological transition in which health problems are highly concentrated on noncommunicable diseases (NCDs). In light of this, the region faces two main challenges: (1) develop cost-effective policies to prevent NCD risk factors, and (2) increase access to quality healthcare in a scenario in which a large share of the labor force is employed in the informal sector. This paper describes both alternative interventions to expand health insurance coverage and their trade-off with labor informality and moral hazard problems. The paper also focuses on obesity as a case example of an NCD, and emphasizes how lack of knowledge along with self-control problems would lead people to make suboptimal decisions related to food consumption, which may later manifest in obesity problems.Fil: Anauati, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; ArgentinaFil: Galiani, Sebastian. University of Maryland; Estados UnidosFil: Weinschelbaum, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentin

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore