1,635 research outputs found

    The X-ray emission of the Crab-like pulsar PSR J0537-6910

    Full text link
    In this paper we present some preliminary result on the spectral and timing analysis of the X-ray pulsed emission from the 16 ms pulsar PSR J0537-6910 in the energy range 0.1--30 keV, based on archival BeppoSAX and RossiXTE observations. This pulsar, discovered by Marshall et al.(1998) in the LMC field with RXTE, is the fastest spinning pulsar associated with a supernova remnant. It is characterized by strong glitch activity with the highest rate of all known Crab-like system.Comment: 4 pages, 2 figures. Contribution to the proceedings of "The Restless High-Energy Universe", Amsterdam, May 5-8, 2003. Editors: E.P.J. van den Heuvel, J.J.M. in't Zand, R.A.M.J. Wijer

    The optical to gamma-ray emission of the Crab pulsar: a multicomponent model

    Full text link
    We present a multicomponent model to explain the features of the pulsed emission and spectrum of the Crab Pulsar, on the basis of X and gamma-ray observations obtained with BeppoSAX, INTEGRAL and CGRO. This model explains the evolution of the pulse shape and of the phase-resolved spectra, ranging from the optical/UV to the GeV energy band, on the assumption that the observed emission is due to more components. The first component, C_O, is assumed to have the pulsed double-peaked profile observed at the optical frequencies, while the second component, C_X, is dominant in the interpeak and second peak phase regions. The spectra of these components are modelled with log-parabolic laws and their spectral energy distributions have peak energies at 12.2 and 178 keV, respectively. To explain the properties of the pulsed emission in the MeV-GeV band, we introduce two more components, C_Ogamma and C_Xgamma, with phase distributions similar to those of C_O and C_X and log-parabolic spectra with the same curvature but peak energies at about 300 MeV and 2 GeV. This multicomponent model is able to reproduce both the broadband phase-resolved spectral behaviour and the changes of the pulse shape with energy. We also propose some possible physical interpretations in which C_O and C_X are emitted by secondary pairs via a synchrotron mechanism while C_Ogamma and C_Xgamma can originate either from Compton scattered or primary curvature photons.Comment: 14 pages, 16 figures; accepted by Astronomy and Astrophysic

    Swift-XRT 6-year monitoring of the ultraluminous X-ray source M33-X8

    Get PDF
    The long term evolution of ULX with their spectral and luminosity variations in time give important clues on the nature of ULX and on the accretion process that powers them. We report here the results of a Swift-XRT 6-year monitoring campaign of the closest example of a persistent ULX, M33 X-8, that extends to 16 years the monitoring of this source in the soft X-rays. The luminosity of this source is a few 10^39 erg/s, marking the faint end of the ULX luminosity function. We analysed the set of 15 observations collected during the Swift monitoring. We searched for differences in the spectral parameters at different observing epochs, adopting several models commonly used to fit the X-ray spectra of ULX. The source exhibits flux variations of the order of 30%. No significant spectral variations are observed along the monitoring. The average 0.5-10 keV spectrum can be well described by a thermal model, either in the form of a slim disk, or as a combination of a Comptonized corona and a standard accretion disk.Comment: 6 pages, 4 figures, 2 tables. Paper published in A&

    Swift reveals the eclipsing nature of the high mass X-ray binary IGR~J16195-4945

    Get PDF
    IGR J16195-4945 is a hard X-ray source discovered by INTEGRAL during the Core Program observations performed in 2003. We analyzed the X-ray emission of this source exploiting the Swift-BAT survey data from December 2004 to March 2015, and all the available Swift-XRT pointed observations. The source is detected at a high significance level in the 123-month BAT survey data, with an average 15-150 keV flux of the source of ~1.6 mCrab. The timing analysis on the BAT data reveals with a significance higher than 6 standard deviations the presence of a modulated signal with a period of 3.945 d, that we interpret as the orbital period of the binary system. The folded light curve shows a flat profile with a narrow full eclipse lasting ~3.5% of the orbital period. We requested phase-constrained XRT observations to obtain a more detailed characterization of the eclipse in the soft X-ray range. Adopting resonable guess values for the mass and radius of the companion star, we derive a semi-major orbital axis of ~31 R_sun, equivalent to ~1.8 times the radius of the companion star. From these estimates and from the duration of the eclipse we derive an orbital inclination between 55 and 60 degrees. The broad band time-averaged XRT+BAT spectrum is well modeled with a strongly absorbed flat power law, with absorbing column N_H=7x 10^22 cm^(-2) and photon index Gamma=0.5, modified by a high energy exponential cutoff at E_cut=14 keV.Comment: 5 pages, 5 figures, 2 tables. Published on MNRA

    Temporal features of LS I +61^{\circ}303 in hard X-rays from the Swift/BAT survey data

    Get PDF
    We study the long-term spectral and timing behaviour of LS I +61^{\circ}303 in hard X-rays (15--150 keV) using \sim10 years of survey data from the SwiftSwift Burst Alert Telescope (BAT) monitor. We focus on the detection of long periodicities known to be present in this source in multiple wavelengths. We clearly detect three periods: the shorter one at 26.48 days is compatible with the orbital period of the system; the second, longer, periodicity at 26.93 days, is detected for the first time in X-rays and its value is consistent with an analogous temporal feature recently detected in the radio and in the gamma-ray waveband, and we associate it with a modulation caused by a precessing jet in this system. Finally, we find also evidence of the long-term periodicity at \sim1667 d, that results compatible with a beat frequency of the two close, and shorter, periodicities. We discuss our results in the context of the multi-band behaviour of the physical processes of this source.Comment: 5 pages, 8 figures. Published in MNRA
    corecore