16 research outputs found

    ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and progenitor cells

    Get PDF
    ZBTB7A is frequently mutated in acute myeloid leukemia (AML) with t(8;21) translocation. However, the oncogenic collaboration between mutated ZBTB7A and the RUNX1–RUNX1T1 fusion gene in AML t(8;21) remains unclear. Here, we investigate the role of ZBTB7A and its mutations in the context of normal and malignant hematopoiesis. We demonstrate that clinically relevant ZBTB7A mutations in AML t(8;21) lead to loss of function and result in perturbed myeloid differentiation with block of the granulocytic lineage in favor of monocytic commitment. In addition, loss of ZBTB7A increases glycolysis and hence sensitizes leukemic blasts to metabolic inhibition with 2-deoxy-d-glucose. We observed that ectopic expression of wild-type ZBTB7A prevents RUNX1-RUNX1T1-mediated clonal expansion of human CD34+ cells, whereas the outgrowth of progenitors is enabled by ZBTB7A mutation. Finally, ZBTB7A expression in t(8;21) cells lead to a cell cycle arrest that could be mimicked by inhibition of glycolysis. Our findings suggest that loss of ZBTB7A may facilitate the onset of AML t(8;21), and that RUNX1-RUNX1T1-rearranged leukemia might be treated with glycolytic inhibitors

    Loss of p27<sub>kip1</sub> increases genomic instability and induces radio-resistance in luminal breast cancer cells

    No full text
    AbstractGenomic instability represents a typical feature of aggressive cancers. Normal cells have evolved intricate responses to preserve genomic integrity in response to stress, such as DNA damage induced by γ-irradiation. Cyclin-dependent kinases (CDKs) take crucial part to these safeguard mechanisms, but involvement of CDK-inhibitors, such as p27Kip1, is less clear. We generated immortalized fibroblasts from p27kip1 knock-out (KO) mouse embryos and re-expressed p27kip1 WT, or its mutant forms, to identify the function of different domains. We γ-irradiated fibroblasts and observed that loss of p27Kip1 was associated to accumulation of residual DNA damage, increased number of mitotic aberration and, eventually, to survival advantage. Nuclear localization and cyclin/CDK-binding of p27Kip1 were critical to mediate proper response to DNA damage. In human luminal breast cancer (LBC) p27kip1 is frequently down-modulated and CDKN1B, p27Kip1 gene, sporadically mutated. We recapitulated results obtained in mouse fibroblasts in a LBC cell line genetically manipulated to be KO for CDKN1B gene. Following γ-irradiation, we confirmed that p27kip1 expression was necessary to preserve genomic integrity and to recognize and clear-out aberrant cells. Our study provides important insights into mechanisms underlying radio-resistance and unveils the possibility for novel treatment options exploiting DNA repair defects in LBC.</jats:p

    CSF3R T618I Collaborates With RUNX1-RUNX1T1 to Expand Hematopoietic Progenitors and Sensitizes to GLI Inhibition

    No full text
    Activating colony-stimulating factor-3 receptor gene (CSF3R) mutations are recurrent in acute myeloid leukemia (AML) with t(8;21) translocation. However, the nature of oncogenic collaboration between alterations of CSF3R and the t(8;21) associated RUNX1-RUNX1T1 fusion remains unclear. In CD34+ hematopoietic stem and progenitor cells from healthy donors, double oncogene expression led to a clonal advantage, increased self-renewal potential, and blast-like morphology and distinct immunophenotype. Gene expression profiling revealed hedgehog signaling as a potential mechanism, with upregulation of GLI2 constituting a putative pharmacological target. Both primary hematopoietic cells and the t(8;21) positive AML cell line SKNO-1 showed increased sensitivity to the GLI inhibitor GANT61 when expressing CSF3R T618I. Our findings suggest that during leukemogenesis, the RUNX1-RUNXT1 fusion and CSF3R mutation act in a synergistic manner to alter hedgehog signaling, which can be exploited therapeutically
    corecore