6 research outputs found

    Relationship between eroded volume and main scour hole dimensions near quay walls caused by internal counter-rotating twin-propellers

    Get PDF
    The present study aims at computing and analysing the eroded sediment volumes induced by twin-propeller jets near a vertical quay wall from the main geometric characteristics of the scour hole. Two different scouring mechanisms govern the scouring process: i) the down-flow due to the interaction between the propellers jet and the wall, and ii) the direct impact of the propellers jet flow on the seabed. For this reason, the whole study area is divided into two subzones: 1) ’near the wall’ field; 2) ’far from the wall’ field. Both forward and backward rotation of the propellers during manoeuvring are analysed. The results show that, for the two manoeuvring states, the relationship between the eroded volume and the geometric characteristics of the scour hole in the near-wall subzone does not change, meaning that the backward rotation does not affect the morphology of the scour hole near the wall. Moreover, the eroded volume can be determined as a function of the maximum depth near the wall and, with higher accuracy, as a product of the three main geometric characteristics of the scour hole at any time-stage during the scour hole developmentPostprint (published version

    Pt based enzyme electrode probes assembled with prussian blue and conducting polymer nanostructures

    No full text
    placed on a Pt foil and used to support the polymer, then, the electropolymerisation was performed by chronocoulometry. The obtained conductive polymer nanostructures were then placed on Pt electrode and used to support highly dispersed prussian blue (PB), which acts as the active component for H2O2 detection. The observed good stability of PB as catalyst of H2O2 was related to the presence of organic non-conventional conducting polymers in a composite nanostructured film. These nanostructured polymer/PB composite films were also characterised by scanning electron microscopy (SEM) and Raman spectroscopy. The non-conventional conducting polymer nanotubules/PB modified Pt electrodes were tested by cyclic voltammeter for stability at different pH values, then, by amperometry, for hydrogen peroxide, ascorbic acid, acetaminophen, uric acid and acetylcholine. Glucose oxidase (GOD), lactate oxidase (LOD), l-aminoacid oxidase (l-AAOD), alcohol oxidase (AOD), glycerol-3-phosphate oxidase (GPO), lysine oxidase (LyOx), and choline oxidase (ChOx) were immobilised on PB layer supported on 1,2-diaminobenzene (1,2-DAB) nanotubules onto the Pt electrodes. Different strategies for enzyme immobilisation were performed and used. Analytical parameters such as reproducibility, interference rejection, response time, storage and operational stability of the sensors have been studied and optimised. Results provide a guide to design high sensitive, stable and interference-free biosensors. The glucose biosensors assembled with nanostructured poly(1,2-DAB) showed a detection limit of 5 × 10−5 mol l−1, a wide linearity range (5 × 10−5 to 5 × 10−3 mol l−1), a high selectivity, a stability of 3 months at 4 ◦C, and at least 4 weeks at room temperature. Similar analytical parameters and stability were also studied for l-(+)-lactic acid, l-leucine, ethanol, glycerol-3-phosphate, lysine, and choline biosensors
    corecore