6 research outputs found

    Repetitive Impact Exposure and Characterization of Stress-Whitening of an American Football Helmet Outer Shell Material

    No full text
    Mechanical stress exerted upon impact-modified polycarbonate (PC) and poly(ethylene terephthalate) (PET) blends has been reported to generate microscopic voids via rubber-toughener (RT) particle cavitation which can macroscopically manifest to visibly whiten the material. Previous work has revealed a whitening phenomenon in collegiate American football helmet outer shells after a single season and in helmet-grade plaques following linear impact testing. The purpose of this research was to quantify the effects of repetitive linear drop exposures on the (i) impact performance; (ii) physical and thermal properties; and (iii) surface and tensile mechanical properties of a stress-whitened American football helmet outer shell material. Statistically significant changes in plaque impact performance corresponded to substantial stress-whitening that penetrated up to 40-45% into the plaque thickness and elicited shifts in surface and tensile mechanical properties. Nanoscale microscopy revealed elongation of the PC/PET matrix and delamination at the RT-matrix interface. Thermal property analysis suggested the concomitant occurrence of RT cavitation and strain-induced PET crystallization. Overall, the research identified a battery of diagnostic tools to characterize material property changes of stress-whitening in rubber toughened helmet outer shell materials. (C) 2016 Elsevier Ltd. All rights reserved

    Expanding Plastics Recycling Technologies: Chemical Aspects, Technology Status and Challenges

    No full text
    Less than 10% of the plastics generated globally are recycled, while the rest are incinerated, accumulated in landfills, or leach into the environment. New technologies are emerging to chemically recycle waste plastics that are receiving tremendous interest from academia and industry. Chemists and chemical engineers need to understand the fundamentals of these technologies to design improved systems for chemical recycling and upcycling of waste plastics. In this paper, we review the entire life cycle of plastics and options for the management of plastic waste to address barriers to industrial chemical recycling and further provide perceptions on possible opportunities with such materials. Knowledge and insights to enhance plastic recycling beyond its current scale are provided. Outstanding research problems and where researchers in the field should focus their efforts in the future are also discussed
    corecore