1,519 research outputs found

    Modeling the Formation of Clouds in Brown Dwarf Atmospheres

    Full text link
    Because the opacity of clouds in substellar mass object (SMO) atmospheres depends on the composition and distribution of particle sizes within the cloud, a credible cloud model is essential for accurately modeling SMO spectra and colors. We present a one--dimensional model of cloud particle formation and subsequent growth based on a consideration of basic cloud microphysics. We apply this microphysical cloud model to a set of synthetic brown dwarf atmospheres spanning a broad range of surface gravities and effective temperatures (g_surf = 1.78 * 10^3 -- 3 * 10^5 cm/s^2 and T_eff = 600 -- 1600 K) to obtain plausible particle sizes for several abundant species (Fe, Mg2SiO4, and Ca2Al2SiO7). At the base of the clouds, where the particles are largest, the particle sizes thus computed range from ~5 microns to over 300 microns in radius over the full range of atmospheric conditions considered. We show that average particle sizes decrease significantly with increasing brown dwarf surface gravity. We also find that brown dwarfs with higher effective temperatures have characteristically larger cloud particles than those with lower effective temperatures. We therefore conclude that it is unrealistic when modeling SMO spectra to apply a single particle size distribution to the entire class of objects.Comment: 25 pages; 8 figures. We have added considerable detail describing the physics of the cloud model. We have also added discussions of the issues of rainout and the self-consistent coupling of clouds with brown dwarf atmospheric models. We have updated figures 1, 3, and 4 with new vertical axis labels and new particle sizes for forsterite and gehlenite. Accepted to the Astrophysical Journal, Dec. 2, 200

    A map of the day-night contrast of the extrasolar planet HD 189733b

    Get PDF
    "Hot Jupiter" extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 AU is the average Sun-Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet's surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a 'map' of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 +/- 33 K and a maximum brightness temperature of 1212 +/- 11 K at a wavelength of 8 microns, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16±\pm6 degrees before opposition, corresponding to a hot spot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 +/- 24 s later than predicted, which may indicate a slightly eccentric orbit.Comment: To appear in the May 10 2007 issue of Nature, 10 pages, 2 black and white figures, 1 colo

    Bone mineral content and areal density, but not bone area, predict an incident fracture risk: a comparative study in a UK prospective cohort

    Get PDF
    We studied a prospective UK cohort of women aged 20 to 80 years, assessed by dual-energy X-ray absorptiometry (DXA) at baseline. Bone mineral content (BMC) and areal bone mineral density (aBMD), but not bone area (BA), at femoral neck, lumbar spine and the whole body sites were similarly predictive of incident fractures. BACKGROUND: Low aBMD, measured by DXA, is a well-established risk factor for future fracture, but little is known about the performance characteristics of other DXA measures such as BA and BMC in fracture prediction. We therefore investigated the predictive value of BA, BMC and aBMD for incident fracture in a prospective cohort of UK women. METHODS: In this study, 674 women aged 20-80 years, recruited from four GP practices in Southampton, underwent DXA assessment (proximal femur, lumbar spine, total body) between 1991 and 1993. All women were contacted in 1998-1999 with a validated postal questionnaire to collect information on incident fractures and potential confounding factors including medication use. Four hundred forty-three women responded, and all fractures were confirmed by the assessment of images and radiology reports by a research nurse. Cox proportional hazard models were used to explore the risk of incident fracture, and the results are expressed as hazard ratio (HR) per 1 SD decrease in the predictor and 95% CI. Associations were adjusted for age, BMI, alcohol consumption, smoking, HRT, medications and history of fracture. RESULTS: Fifty-five women (12%) reported a fracture. In fully adjusted models, femoral neck BMC and aBMD were similarly predictive of incident fracture. Femoral neck BMC: HR/SD = 1.64 (95%CI: 1.19, 2.26; p = 0.002); femoral neck aBMD: HR/SD = 1.76 (95%CI: 1.19, 2.60; p = 0.005). In contrast, femoral neck BA was not associated with incident fracture, HR/SD = 1.15 (95%CI: 0.88, 1.50; p = 0.32). Similar results were found with bone indices at the lumbar spine and the whole body. CONCLUSIONS: In conclusion, BMC and aBMD appear to predict incident fracture with similar HR/SD, even after adjustment for body size. In contrast, BA only weakly predicted the future fracture. These findings support the use of DXA aBMD in fracture risk assessment, but also suggest that factors which specifically influence BMC will have a relevance to the risk of the incident fracture

    Resolving the Surfaces of Extrasolar Planets With Secondary Eclipse Light Curves

    Full text link
    We present a method that employs the secondary eclipse light curves of transiting extrasolar planets to probe the spatial variation of their thermal emission. This technique permits an observer to resolve the surface of the planet without the need to spatially resolve its central star. We evaluate the feasibility of this technique for the HD 209458 system [..]. We consider two representations of the planetary thermal emission; a simple model parameterized by a sinusoidal dependence on longitude and latitude, as well as the results of a three-dimensional dynamical simulation of the planetary atmosphere previously published by Cooper & Showman. We find that observations of the secondary eclipse light curve are most sensitive to a longitudinal offset in the geometric and photometric centroids of the hemisphere of the planet visible near opposition. To quantify this signal, we define a new parameter, the ``uniform time offset,'' which measures the time lag between the observed secondary eclipse and that predicted by a planet with a uniform surface flux distribution. We compare the predicted amplitude of this parameter for HD 209458 with the precision with which it could be measured with IRAC. We find that IRAC observations at 3.6um a single secondary eclipse should permit sufficient precision to confirm or reject the Cooper & Showman model of the surface flux distribution for this planet. We quantify the signal-to-noise ratio for this offset in the remaining IRAC bands (4.5um, 5.8um, and 8.0um), and find that a modest improvement in photometric precision (as might be realized through observations of several eclipse events) should permit a similarly robust detection.Comment: AASTeX 5.2, 24 pages, 5 figures, accepted for publication in ApJ; v2: clarifications, updated to version accepted by ApJ; v3: try to reduce spacin

    Atmospheric Circulation of Hot Jupiters: Three-dimensional circulation models of HD 209458b and HD 189733b with Simplified Forcing

    Full text link
    We present global, three-dimensional numerical simulations of the atmospheric circulation on HD 209458b and HD 189733b and calculate the infrared spectra and light curves predicted by these simulations, which we compare with available observations. Radiative heating/cooling is parameterized with a simplified Newtonian relaxation scheme. Our simulations develop day-night temperature contrasts that vary strongly with pressure. At low pressure (<10 mbar), air flows from the substellar point toward the antistellar point, both along the equator and over the poles. At deeper levels, the flow develops an eastward equatorial jet with speeds of 3-4 km/sec, with weaker westward flows at high latitudes. This basic flow pattern is robust to variations in model resolution, gravity, radiative time constant, and initial temperature structure. Nightside spectra show deep absorption bands of H2O, CO, and/or CH4, whereas on the dayside these absorption bands flatten out or even flip into emission. This results from the strong effect of dynamics on the vertical temperature-pressure structure; the temperature decreases strongly with altitude on the nightside but becomes almost isothermal on the dayside. In Spitzer bandpasses, our predicted planet-to-star flux ratios vary by a factor of 2-10 with orbital phase, depending on the wavelength and chemistry. For HD 189733b, where a detailed 8-micron light curve has been obtained, we correctly produce the observed phase offset of the flux maximum, but we do not explain the flux minimum and we overpredict the total flux variation. This discrepancy likely results from the simplifications inherent in the Newtonian relaxation scheme and provides motivation for incorporating realistic radiative transfer in future studies.Comment: 17 pages, 14 figures, submitted for publication in Ap

    Rapid translation of clinical guidelines into executable knowledge : a case study of COVID-19 and online demonstration

    Get PDF
    Introduction: We report a pathfinder study of AI/knowledge engineering methods to rapidly formalise COVID‐19 guidelines into an executable model of decision making and care pathways. The knowledge source for the study was material published by BMJ Best Practice in March 2020. Methods: The PROforma guideline modelling language and OpenClinical.net authoring and publishing platform were used to create a data model for care of COVID‐19 patients together with executable models of rules, decisions and plans that interpret patient data and give personalised care advice. Results: PROforma and OpenClinical.net proved to be an effective combination for rapidly creating the COVID‐19 model; the Pathfinder 1 demonstrator is available for assessment at https://www.openclinical.net/index.php?id=746. Conclusions: This is believed to be the first use of AI/knowledge engineering methods for disseminating best‐practice in COVID‐19 care. It demonstrates a novel and promising approach to the rapid translation of clinical guidelines into point of care services, and a foundation for rapid learning systems in many areas of healthcare
    • 

    corecore