30 research outputs found

    Differential Ear Effects of Profound Unilateral Deafness on the Adult Human Central Auditory System

    No full text
    This study investigates the effects of profound acquired unilateral deafness on the adult human central auditory system by analyzing long-latency auditory evoked potentials (AEPs) with dipole source modeling methods. AEPs, elicited by clicks presented to the intact ear in 19 adult subjects with profound unilateral deafness and monaurally to each ear in eight adult normal-hearing controls, were recorded with a 31-channel system. The responses in the 70–210 ms time window, encompassing the N1b/P2 and Ta/Tb components of the AEPs, were modeled by a vertically and a laterally oriented dipole source in each hemisphere. Peak latencies and amplitudes of the major components of the dipole waveforms were measured in the hemispheres ipsilateral and contralateral to the stimulated ear. The normal-hearing subjects showed significant ipsilateral–contralateral latency and amplitude differences, with contralateral source activities that were typically larger and peaked earlier than the ipsilateral activities. In addition, the ipsilateral–contralateral amplitude differences from monaural presentation were similar for left and for right ear stimulation. For unilaterally deaf subjects, the previously reported reduction in ipsilateral–contralateral amplitude differences based on scalp waveforms was also observed in the dipole source waveforms. However, analysis of the source dipole activity demonstrated that the reduced inter-hemispheric amplitude differences were ear dependent. Specifically, these changes were found only in those subjects affected by profound left ear unilateral deafness

    Automatic auditory processing of English words as indexed by the mismatch negativity, using a multiple deviant paradigm

    No full text
    Objective: The aim of this study was to investigate mismatch negativity (NEHN) responses to a variety of speech stimuli (/de:/, /ge:/, /deI/ "day", and /geI/ "gay") in a multiple deviant paradigm. It was hypothesized that all speech stimulus contrasts in the multiple deviant paradigm, including the fine acoustic speech contrast [d/g], would elicit robust MMN responses and that consonant vowel (CV) real word deviants (e.g., "day" and "gay") would elicit larger MMN responses than CV nonword deviants (e.g., "de" and "ge") within and across experimental contrasts

    Processing of English words with fine acoustic contrasts and simple tones: A mismatch negativity study

    No full text
    The purpose of this study was to compare the robustness of the event-related potential (ERP) response, called the mismatch negativity (MMN), when elicited by simple tone stimuli (differing in frequency, duration, or intensity) and speech stimuli (CV nonword contrast /de:/ vs. /ge:/ and CV word contrast /deI/ vs. /geI/). The study was conducted using 30 young adult subjects (Groups A and B; n = 15 each). The speech stimuli were presented to Group A at a stimulus onset asynchrony (SOA) of 610 msec and to Group B at an SOA of 900 msec. The tone stimuli were presented to both groups at an SOA of 610 msec. MMN responses were elicited by the simple tone stimuli (66.7%-96.7% of subjects with MMN "present," or significantly different from zero, p < 0.05) but not the speech stimuli (10% subjects with MMN present for nonwords, 10% for words). The length of the SOA (610 msec or 900 msec) had no effect on the ability to obtain consistent MMN responses to the speech stimuli. The results indicated a lack of robust MMN elicited by speech stimuli with fine acoustic contrasts under carefully controlled methodological conditions. The implications of these results are discussed in relation to conflicting reports in the literature of speech-elicited MMNs, and the importance of appropriate methodological design in MMN studies investigating speech processing in normal and pathological populations
    corecore