16,004 research outputs found

    Cranial sutures work collectively to distribute strain throughout the reptile skull

    Get PDF
    The skull is composed of many bones that come together at sutures. These sutures are important sites of growth, and as growth ceases some become fused while others remain patent. Their mechanical behaviour and how they interact with changing form and loadings to ensure balanced craniofacial development is still poorly understood. Early suture fusion often leads to disfiguring syndromes, thus is it imperative that we understand the function of sutures more clearly. By applying advanced engineering modelling techniques, we reveal for the first time that patent sutures generate a more widely distributed, high level of strain throughout the reptile skull. Without patent sutures, large regions of the skull are only subjected to infrequent low-level strains that could weaken the bone and result in abnormal development. Sutures are therefore not only sites of bone growth, but could also be essential for the modulation of strains necessary for normal growth and development in reptiles

    Microfabricated high-finesse optical cavity with open access and small volume

    No full text
    We present a microfabricated optical cavity, which combines a very small mode volume with high finesse. In contrast to other micro-resonators, such as microspheres, the structure we have built gives atoms and molecules direct access to the high-intensity part of the field mode, enabling them to interact strongly with photons in the cavity for the purposes of detection and quantum-coherent manipulation. Light couples directly in and out of the resonator through an optical fiber, avoiding the need for sensitive coupling optics. This renders the cavity particularly attractive as a component of a lab-on-a-chip, and as a node in a quantum network

    Company Ordinance Request, 1862 December 19

    Get PDF

    Evidence for fast thermalization in the plane-wave matrix model

    Full text link
    We perform a numerical simulation of the classical evolution of the plane-wave matrix model with semiclassical initial conditions. Some of these initial conditions thermalize and are dual to a black hole forming from the collision of D-branes in the plane wave geometry. In particular, we consider a large fuzzy sphere (a D2-brane) plus a single eigenvalue (a D0-particle) going exactly through the center of the fuzzy sphere and aimed to intersect it. Including quantum fluctuations of the off-diagonal modes in the initial conditions, with sufficient kinetic energy the configuration collapses to a small size. We also find evidence for fast thermalization: rapidly decaying autocorrelation functions at late times with respect to the natural time scale of the system.Comment: 5 pages, 5 figures, revtex4 format; v2: minor typos fixed; v3: 8 pages, 9 figures, minor changes, includes a supplement as appeared on PR

    From hidden symmetry to extra dimensions: a five dimensional formulation of the Degenerate BESS model

    Full text link
    We consider the continuum limit of a moose model corresponding to a generalization to N sites of the Degenerate BESS model. The five dimensional formulation emerging in this limit is a realization of a RS1 type model with SU(2)_L x SU(2)_R in the bulk, broken by boundary conditions and a vacuum expectation value on the infrared brane. A low energy effective Lagrangian is derived by means of the holographic technique and corresponding bounds on the model parameters are obtained.Comment: Latex file, 40 pages and 5 figure

    Zeeman Slowers for Strontium based on Permanent Magnets

    Full text link
    We present the design, construction, and characterisation of longitudinal- and transverse-field Zeeman slowers, based on arrays of permanent magnets, for slowing thermal beams of atomic Sr. The slowers are optimised for operation with deceleration related to the local laser intensity (by the parameter ϵ\epsilon), which uses more effectively the available laser power, in contrast to the usual constant deceleration mode. Slowing efficiencies of up to ≈\approx 1818 % are realised and compared to those predicted by modelling. We highlight the transverse-field slower, which is compact, highly tunable, light-weight, and requires no electrical power, as a simple solution to slowing Sr, well-suited to spaceborne application. For 88^{88}Sr we achieve a slow-atom flux of around 6×1096\times 10^9 atoms \,s−1^{-1} at 3030 ms−1^{-1}, loading approximately 5×1085\times 10^8 atoms in to a magneto-optical-trap (MOT), and capture all isotopes in approximate relative natural abundances

    A multi-method approach to delineate and validate migratory corridors

    Get PDF
    Context: Managers are faced with numerous methods for delineating wildlife movement corridors, and often must make decisions with limited data. Delineated corridors should be robust to different data and models. Objectives: We present a multi-method approach for delineating and validating wildlife corridors using multiple data sources, which can be used conserve landscape connectivity. We used this approach to delineate and validate migration corridors for wildebeest (Connochaetes taurinus) in the Tarangire Ecosystem of northern Tanzania. Methods: We used two types of locational data (distance sampling detections and GPS collar locations), and three modeling methods (negative binomial regression, logistic regression, and Maxent), to generate resource selection functions (RSFs) and define resistance surfaces. We compared two corridor detection algorithms (cost-distance and circuit theory), to delineate corridors. We validated corridors by comparing random and wildebeest locations that fell within corridors, and cross-validated by data type. Results: Both data types produced similar RSFs. Wildebeest consistently selected migration habitat in flatter terrain farther from human settlements. Validation indicated three of the combinations of data type, modeling, and corridor detection algorithms (detection data with Maxent modeling, GPS collar data with logistic regression modeling, and GPS collar data with Maxent modeling, all using cost-distance) far outperformed the other seven. We merged the predictive corridors from these three data-method combinations to reveal habitat with highest probability of use. Conclusions: The use of multiple methods ensures that planning is able to prioritize conservation of migration corridors based on all available information
    • …
    corecore