59 research outputs found

    Tutorial on the biology of nanotopography

    Get PDF
    The aims of this short tutorial are fourfold: 1) to introduce readers unfamiliar with the field to major concepts in the field; 2) to inform the reader of major unresolved questions; 3) to inform readers of a few major sources of relevant literature; and 4) to place the subject in relation to its relevance to other areas of science and practical application

    Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis

    Get PDF
    Superparamagnetic iron oxide nanoparticles have been used for many years as magnetic resonance imaging contrast agents or in drug delivery applications. Tissue and cell-specific drug targeting by these nanoparticles can be achieved by employing nanoparticle coatings or carrier-drug conjugates that contain a ligand recognized by a receptor on the target cell. In this study, superparamagnetic iron oxide nanoparticles with specific shape and size have been prepared and coupled to insulin for their targeting to cell expressed surface receptors and thereby preventing the endocytosis. The influence of these nanoparticles on human fibroblasts is studied using various techniques to observe cell-nanoparticle interaction that includes light, scanning, and transmission electron microscopy studies. The derivatization of the nanoparticle surface with insulin-induced alterations in cell behavior that were distinct from the underivatized nanoparticles suggests that cell response can be directed via specifically engineered particle surfaces. The results from cell culture studies showed that the uncoated particles were internalized by the fibroblasts due to endocytosis, which resulted in disruption of the cell membrane. In contradiction, insulin-coated nanoparticles attached to the cell membrane, most likely to the cell-expressed surface receptors, and were not endocytosed. The presence of insulin on the surface of the nanoparticles caused an apparent increase in cell proliferation and viability. One major problem with uncoated nanoparticles has been the endocytosis of particles leading to irreversible entry. These results provide a route to prevent this problem. The derivatized nanoparticles show high affinity for cell membrane and opens up new opportunities for magnetic cell separation and recovery that may be of crucial interest for the development of cellular therapies

    A parallel-plate flow chamber to study initial cell adhesion on a nanofeatured surface

    Get PDF
    Cells in the human body come across many types of information, which they respond to. Both material chemistry and topography of the surface where they adhere have an effect on cell shape, proliferation, migration, and gene expression. It is possible to create surfaces with topography at the nanometric scale to allow observation of cell-topography interactions. Previous work has shown that 100-nm-diameter pits on a 300-nm pitch can have a marked effect in reducing the adhesion of rat fibroblasts in static cultures. In the present study, a flow of cell suspension was used to investigate cell adhesion onto nanopits in dynamic conditions, by means of a parallel-plate flow chamber. A flow chamber with inner nanotopography has been designed, which allows real-time observation of the flow over the nanopits. A nanopitted pattern was successfully embossed into polymethylmethacrylate to meet the required shape of the chamber. Dynamic cell adhesion after 1 h has been quantified and compared on flat and nanopitted polymethylmethacrylate substrates. The nanopits were seen to be significantly less adhesive than the flat substrates (p<0.001), which is coherent with previous observations of static cultures

    Decreased Fibroblast and Increased Osteoblast Functions on Ionic Plasma Deposited Nanostructured Ti Coatings

    Get PDF
    Bioactive coatings are in high demand to control cellular functions for numerous medical devices. The objective of this in vitro study was to characterize for the first time fibroblast (fibrous scar tissue forming cells) adhesion and proliferation on an important polymeric biomaterial (silicone) coated with titanium using a novel ionic plasma deposition (IPD) process. Fibroblasts are one of the first anchorage-dependent cells to arrive at an implant surface during the wound healing process. Persistent excessive functions of fibroblasts have been linked to detrimental fibrous tissue formation which may cause implant failure. The IPD process creates a surface-engineered nanostructure (with features usually below 100 nm) by first using a vacuum to remove all contaminants, then guiding charged metallic ions or plasma to the surface of a medical device at ambient temperature. Results demonstrated that compared to currently used titanium and uncoated silicone, silicone coated with titanium using IPD significantly decreased fibroblast adhesion and proliferation. Results also showed competitively increased osteoblast (bone-forming cells) over fibroblast adhesion on silicone coated with titanium; in contrast, osteoblast adhesion was not competitively increased over fibroblast adhesion on uncoated silicone or titanium controls. In this manner, this study strongly suggests that IPD should be further studied for biomaterial applications in which fibrous tissue encapsulation is undesirable (such as for orthopedic implants, cardiovascular components, etc.)

    Comment on "Nanorobotics Control Design: A Collective Behavior Approach for Medicine

    No full text

    Biomedical aspects of magnetic nanoparticles

    No full text
    No abstract available

    Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture

    No full text
    The concept of drug delivery using magnetic nanoparticles greatly benefit from the fact that nanotechnology has developed to a stage that it makes possible not only to produce magnetic nanoparticles in a very narrow size distribution range with superparamagnetic properties but also to engineer particle surfaces to provide site specific delivery of drugs. The size and surface characteristics of the nanoparticles are crucial factors that determine the success of the particles when used in vivo. The aim of this study was to modify the surfaces of the magnetic nanoparticles with PEG to improve the biocompatibility of the nanoparticles by resisting protein adsorption and increasing their intracellular uptake. In this study, the poly(ethyleneglycol) (PEG) modified superparamagnetic iron oxide nanoparticles have been prepared and their influence on human dermal fibroblasts is assessed in terms of cell adhesion/viability, morphology, particle uptake and cytoskeletal organisation studies. Various techniques have been used to determine nanoparticle–cell interactions including light, fluorescence, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The modification of nanoparticle surface induced alterations in cell behaviour distinct from the unmodified particles, suggesting that cell response can be directed via specifically engineered particle surfaces

    Effects of mechanical forces engineering reactions at the cellular level

    No full text
    No abstract available
    corecore