729 research outputs found

    Evanescent Modes and Step-like Acoustic Black Holes

    Get PDF
    We consider a model of an acoustic black hole formed by a quasi-one dimensional Bose-Einstein condensate with a step-like horizon. This system is analyzed by solving the corresponding Bogoliubov-de Gennes equation with an appropriate matching condition at the jump. When the step is between a subsonic and supersonic flow, a sonic horizon develops and in addition to the scattering coefficients we compute the distribution of the accompanying analogue Hawking radiation. Additionally, in response to the abrupt variation in flow and non-linear Bogoliubov dispersion relation, evanescent solutions of the Bogoliubov-de Gennes equation also appear and decay out from the horizon. We bound this decay length and show that these modes produce a modulation of observables outside the event horizon by their interference with outgoing Hawking flux. We go further and find specific superpositions of ingoing eigenmodes which exhibit coherent cancellation of the Hawking flux outside the horizon but nevertheless have evanescent support outside the black hole. We conclude by speculating that when quasiparticle interactions are included, evanescent modes may yield a leakage of information across the event horizon via interactions between the real outgoing Hawking flux and the virtual evanescent modes, and that we may expect this as a generic feature of models which break Lorentz invariance at the UV (Planck) scale.Comment: 28 pages, 7 figures (including Appendices) Expanded upon and reformatte

    Absence of Weak Localization on Negative Curvature Surfaces

    Full text link
    The interplay between disorder and quantum interference leads to a wide variety of physical phenomena including celebrated Anderson localization -- the complete absence of diffusive transport due to quantum interference between different particle trajectories. In two dimensions, any amount of disorder is thought to induce localization of all states at long enough length scales, though this may be prevented if bands are topological or have strong spin-orbit coupling. In this note, we present a simple argument providing another mechanism for disrupting localization: by tuning the underlying curvature of the manifold on which diffusion takes place. We show that negative curvature manifolds contain a natural infrared cut off for the probability of self returning paths. We provide explicit calculations of the Cooperon -- directly related to the weak-localization corrections to the conductivity -- in hyperbolic space. It is shown that constant negative curvature leads to a rapid growth in the number of available trajectories a particle can coherently traverse in a given time, reducing the importance of interference effects and restoring classical diffusive behavior even in the absence of inelastic collisions. We conclude by arguing that this result may be amenable to experimental verification through the use of quantum simulators.Comment: 4 pages, 1 figur

    Dynamics of photo-induced ferromagnetism in oxides with orbital degeneracy

    Full text link
    By using intense coherent electromagnetic radiation, it may be possible to manipulate the properties of quantum materials very quickly, or even induce new and potentially useful phases that are absent in equilibrium. For instance, ultrafast control of magnetic dynamics is crucial for a number of proposed spintronic devices and can also shed light on the possible dynamics of correlated phases out of equilibrium. Inspired by recent experiments on spin-orbital ferromagnet YTiO3_3 we consider the nonequilibrium dynamics of Heisenberg ferromagnetic insulator with low-lying orbital excitations. We model the dynamics of the magnon excitations in this system following an optical pulse which resonantly excites infrared-active phonon modes. As the phonons ring down they can dynamically couple the orbitals with the low-lying magnons, leading to a dramatically modified effective bath for the magnons. We show this transient coupling can lead to a dynamical acceleration of the magnetization dynamics, which is otherwise bottlenecked by small anisotropy. Exploring the parameter space more we find that the magnon dynamics can also even completely reverse, leading to a negative relaxation rate when the pump is blue-detuned with respect to the orbital bath resonance. We therefore show that by using specially targeted optical pulses, one can exert a much greater degree of control over the magnetization dynamics, allowing one to optically steer magnetic order in this system. We conclude by discussing interesting parallels between the magnetization dynamics we find here and recent experiments on photo-induced superconductivity, where it is similarly observed that depending on the initial pump frequency, an apparent metastable superconducting phase emerges.Comment: 16 pages, 11 figures + 5 pages, no figure

    Probing Electromagnetic Nonreciprocity with Quantum Geometry of Photonic States

    Full text link
    Reciprocal and nonreciprocal effects in dielectric and magnetic materials provide crucial information about the microscopic properties of electrons. However, experimentally distinguishing the two has proven to be challenging, especially when the associated effects are extremely small. To this end, we propose a contact-less detection using a cross-cavity device where a material of interest is placed at its centre. We show that the optical properties of the material, such as Kerr and Faraday rotation, or, birefringence, manifest in the coupling between the cavities' electromagnetic modes and in the shift of their resonant frequencies. By calculating the dynamics of a geometrical photonic state, we formulate a measurement protocol based on the quantum metric and quantum process tomography that isolates the individual components of the material's complex refractive index and minimizes the quantum mechanical Cram\'er-Rao bound on the variance of the associated parameter estimation. Our approach is expected to be applicable across a broad spectrum of experimental platforms including Fock states in optical cavities, or, coherent states in microwave and THz resonators.Comment: 9 pages, 4 figure

    A map of the day-night contrast of the extrasolar planet HD 189733b

    Get PDF
    "Hot Jupiter" extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 AU is the average Sun-Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet's surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a 'map' of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 +/- 33 K and a maximum brightness temperature of 1212 +/- 11 K at a wavelength of 8 microns, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16Β±\pm6 degrees before opposition, corresponding to a hot spot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 +/- 24 s later than predicted, which may indicate a slightly eccentric orbit.Comment: To appear in the May 10 2007 issue of Nature, 10 pages, 2 black and white figures, 1 colo

    Contrasting Ecosystem-Effects of Morphologically Similar Copepods

    Get PDF
    Organisms alter the biotic and abiotic conditions of ecosystems. They can modulate the availability of resources to other species (ecosystem engineering) and shape selection pressures on other organisms (niche construction). Very little is known about how the engineering effects of organisms vary among and within species, and, as a result, the ecosystem consequences of species diversification and phenotypic evolution are poorly understood. Here, using a common gardening experiment, we test whether morphologically similar species and populations of Diaptomidae copepods (Leptodiaptomus ashlandi, Hesperodiaptomus franciscanus, Skistodiaptomus oregonensis) have similar or different effects on the structure and function of freshwater ecosystems. We found that copepod species had contrasting effects on algal biomass, ammonium concentrations, and sedimentation rates, and that copepod populations had contrasting effects on prokaryote abundance, sedimentation rates, and gross primary productivity. The average size of ecosystem-effect contrasts between species was similar to those between populations, and was comparable to those between fish species and populations measured in previous common gardening experiments. Our results suggest that subtle morphological variation among and within species can cause multifarious and divergent ecosystem-effects. We conclude that using morphological trait variation to assess the functional similarity of organisms may underestimate the importance of species and population diversity for ecosystem functioning

    Stabilizing fluctuating spin-triplet superconductivity in graphene via induced spin-orbit coupling

    Full text link
    A recent experiment showed that proximity induced Ising spin-orbit coupling enhances the spin-triplet superconductivity in Bernal bilayer graphene. Here, we show that, due to the nearly perfect spin rotation symmetry of graphene, the fluctuations of the spin orientation of the triplet order parameter suppress the superconducting transition to nearly zero temperature. Our analysis shows that both Ising spin-orbit coupling and in-plane magnetic field can eliminate these low-lying fluctuations and can greatly enhance the transition temperature, consistent with the recent experiment. Our model also suggests the possible existence of a phase at small anisotropy and magnetic field which exhibits quasi-long-range ordered spin-singlet charge 4e superconductivity, even while the triplet 2e superconducting order only exhibits short-ranged correlations. Finally, we discuss relevant experimental signatures.Comment: 6 pages, 2 figures + 8 pages, 1 figure supplementa
    • …
    corecore