235 research outputs found

    Indirect Sensitivity to Heavy Z' Bosons at a Multi-TeV e+e- Collider

    Full text link
    We compare the phenomenology of two models, the so-called minimal Z' and an effective model for a SM-like Higgs realised as a composite state of a new strong interaction, at a multi-TeV linear collider in the hypothesis that the new physics is at a scale beyond the direct reach of the machine.Comment: 6 pages, 5 figures, to appear in the Proceedings of the International Workshop on Future Linear Colliders LCWS201

    Future Electron-Positron Colliders and the 4-Dimensional Composite Higgs Model

    Get PDF
    In this note we analyse the prospects of a future electron-positron collider in testing a particular realisation of a composite Higgs model encompassing partial compositeness, namely, the 4-Dimensional Composite Higgs Model. We study the main Higgs production channels for three possible energy stages and different luminosity options of such a machine and confront our results to the expected experimental accuracies in the various Higgs decay channels accessible herein and, for comparison, also at the Large Hadron Collider.Comment: 24 pages, 10 figures, minor corrections for publication in JHE

    Top pair production at a future e+e−e^+e^- machine in a composite Higgs scenario

    Get PDF
    The top quark plays a central role in many New Physics scenarios and in understanding the details of Electro-Weak Symmetry Breaking. In the short- and mid-term future, top-quark studies will mainly be driven by the experiments at the Large Hadron Collider. Exploration of top quarks will, however, be an integral part of particle physics studies at any future facility and an e+e−e^+ e^- collider will have a very comprehensive top-quark physics program. We discuss the possibilities of testing NP in the top-quark sector within a composite Higgs scenario through deviations from the Standard Model in top pair production for different Centre-of-Mass energy options of a future e+e−e^+e^- machine. In particular, we focus on precision studies of the top-quark sector at a CM energy ranging from 370 GeV up to 3 TeV.Comment: 23 pages, 10 figures; v2: minor corrections, published on JHE

    Improved analysis of the bounds from the electroweak precision tests on the 4-site model

    Full text link
    We present a new complete analysis of the electroweak precision observables within the recently proposed 4-site Higgsless model, which is based on the SU(2)_L x SU(2)_1 x SU(2)_2 x U(1)_Y gauge symmetry and predicts six extra gauge bosons, W_{1,2} and Z_{1,2}. Within the epsilon_i (i=1,2,3,b) parametrization, we compute for the first time the EWPT bounds via a complete numerical algorithm going beyond commonly used approximations. Both epsilon_{1,3} impose strong constraints. Hence, it is mandatory to consider them jointly when extracting EWPT bounds and to fully take in to account the correlations among the electroweak precison measurements. The phenomenological consequence is that the extra gauge bosons must be heavier than 250 GeV. Their couplings to SM fermions, even if bounded, might be of the same order of magnitude than the SM ones. In contrast to other Higgsless models, the 4-site model is not fermiophobic. The new gauge bosons could thus be discovered in the favoured Drell-Yan channel already during the present run of the LHC experiment.Comment: Latex file, 35 pages, 10 figures, corrected typos, published versio

    Exclusion and discovery via Drell-Yan in the 4DCHM

    Full text link
    Searches for Z' bosons are most sensitive in the dilepton channels at hadron colliders. Whilst finite width and interference effects do affect the modifications the presence of BSM physics makes to Standard Model (SM) contributions, generic searches are often designed to minimize these. The experimental approach adopted works well in the case of popular models that predict a single and narrow Z' boson allowing these effects to effectively be neglected. Conversely, finite width and interference effects may have to be taken into account in experimental analyses when such Z' states are wide or where several states are predicted. We explore the consequences of these effects in the 4-Dimensional Composite Higgs Model (4DCHM) which includes multiple new Z' bosons and where the decays of these resonances to non-SM fermions can result in large widths

    Interference effects in heavy W'-boson searches at the LHC

    Full text link
    Interference effects are widely neglected in searches for new physics. This is the case in recent publications on searches for W'-bosons using leptonic final states. We examine the effects of interference on distributions frequently used to determine mass limits for possible W'-bosons and show that there are important qualitative effects on the behaviour of the new physics signal. There are two main consequences. Firstly, exclusion limits where interferences effects have not been considered are likely to have been overestimated. Secondly, presenting experimental results as a function of a transverse mass cut rather than in terms of the contribution of new physics to the total cross-section would be more informative.Comment: 31 pages, 8 figures. Published versio

    Drell-Yan production of multi Z'-bosons at the LHC within Non-Universal ED and 4D Composite Higgs Models

    Get PDF
    The Drell-Yan di-lepton production at hadron colliders is by far the preferred channel to search for new heavy spin-1 particles. Traditionally, such searches have exploited the Narrow Width Approximation (NWA) for the signal, thereby neglecting the effect of the interference between the additional Z'-bosons and the Standard Model Z and {\gamma}. Recently, it has been established that both finite width and interference effects can be dealt with in experimental searches while still retaining the model independent approach ensured by the NWA. This assessment has been made for the case of popular single Z'-boson models currently probed at the CERN Large Hadron Collider (LHC). In this paper, we test the scope of the CERN machine in relation to the above issues for some benchmark multi Z'-boson models. In particular, we consider Non-Universal Extra Dimensional (NUED) scenarios and the 4-Dimensional Composite Higgs Model (4DCHM), both predicting a multi-Z' peaking structure. We conclude that in a variety of cases, specifically those in which the leptonic decays modes of one or more of the heavy neutral gauge bosons are suppressed and/or significant interference effects exist between these or with the background, especially present when their decay widths are significant, traditional search approaches based on the assumption of rather narrow and isolated objects might require suitable modifications to extract the underlying dynamics

    From hidden symmetry to extra dimensions: a five dimensional formulation of the Degenerate BESS model

    Full text link
    We consider the continuum limit of a moose model corresponding to a generalization to N sites of the Degenerate BESS model. The five dimensional formulation emerging in this limit is a realization of a RS1 type model with SU(2)_L x SU(2)_R in the bulk, broken by boundary conditions and a vacuum expectation value on the infrared brane. A low energy effective Lagrangian is derived by means of the holographic technique and corresponding bounds on the model parameters are obtained.Comment: Latex file, 40 pages and 5 figure

    BSM Physics: What the Higgs Can Tell Us

    Full text link
    This discovery of the Higgs boson last year has created new possibilities for testing candidate theories for explaining physics beyond the Standard Model. Here we explain the ways in which new physics can leave its marks in the experimental Higgs data, and how we can use the data to constrain and compare different models. In this proceedings paper we use two models, Minimal Universal Extra Dimensions and the 4D Composite Higgs model, as examples to demonstrate the technique.Comment: V2 corrected typo in author name. Submitted to the proceedings of the 41st ITEP Winter School, Mosco

    The equivalence theorem for gauge boson scattering in a five-dimensional Standard Model

    Get PDF
    We present an equivalence theorem for the longitudinal components of the gauge bosons in a compactified five-dimensional extension of the Standard Model, whose spontaneous symmetry breaking is driven either by one Higgs in the bulk or by one on a brane or by both together. We also show some implications for the unitarity bounds on Higgs masses
    • …
    corecore