3 research outputs found
Substrate Suppression of Thermal Roughness in Stacked Supported Bilayers
We have fabricated a stack of five 1,2-dipalmitoyl-sn-3-phosphatidylethanolamine (DPPE) bilayers supported on a polished silicon substrate in excess water. The density profile of these stacks normal to the substrate was obtained through analysis of x-ray reflectivity. Near the substrate, we find the layer roughness and repeat spacing are both significantly smaller than values found in bulk multilayer systems. The reduced spacing and roughness result from suppression of lateral fluctuations due to the flat substrate boundary. The layer spacing decrease then occurs due to reduced Helfrich repulsion.This work was partially supported by NSF Grants No.
DMR-0706369 and No. DMR-0706665. Use of the Advanced
Photon Sourcewas supported by theUSDepartment of Energy,
Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357. SKS and ANP wish
to acknowledge support from the Office of Basic Energy
Sciences, US Department of Energy, via Grant No. DE-FG02-
04ER46173. We would also like to thank Suresh Narayanan
for his support of the experimental work at Sector 8-ID