210 research outputs found
Spatially resolved dielectric loss at the Si/SiO interface
The Si/SiO interface is populated by isolated trap states which modify
its electronic properties. These traps are of critical interest for the
development of semiconductor-based quantum sensors and computers, as well as
nanoelectronic devices. Here, we study the electric susceptibility of the
Si/SiO interface with nm spatial resolution using frequency-modulated
atomic force microscopy to measure a patterned dopant delta-layer buried 2 nm
beneath the silicon native oxide interface. We show that surface charge
organization timescales, which range from 1-150 ns, increase significantly
around interfacial states. We conclude that dielectric loss under time-varying
gate biases at MHz and sub-MHz frequencies in metal-insulator-semiconductor
capacitor device architectures is highly spatially heterogeneous over nm length
scales
Single‐Atom Control of Arsenic Incorporation in Silicon for High‐Yield Artificial Lattice Fabrication
Artificial lattices constructed from individual dopant atoms within a semiconductor crystal hold promise to provide novel materials with tailored electronic, magnetic, and optical properties. These custom-engineered lattices are anticipated to enable new, fundamental discoveries in condensed matter physics and lead to the creation of new semiconductor technologies including analog quantum simulators and universal solid-state quantum computers. This work reports precise and repeatable, substitutional incorporation of single arsenic atoms into a silicon lattice. A combination of scanning tunneling microscopy hydrogen resist lithography and a detailed statistical exploration of the chemistry of arsine on the hydrogen-terminated silicon (001) surface are employed to show that single arsenic dopants can be deterministically placed within four silicon lattice sites and incorporated with 97 ± 2% yield. These findings bring closer to the ultimate frontier in semiconductor technology: the deterministic assembly of atomically precise dopant and qubit arrays at arbitrarily large scales
Single-Atom Control of Arsenic Incorporation in Silicon for High-Yield Artificial Lattice Fabrication
Artificial lattices constructed from individual dopant atoms within a
semiconductor crystal hold promise to provide novel materials with tailored
electronic, magnetic, and optical properties. These custom engineered lattices
are anticipated to enable new, fundamental discoveries in condensed matter
physics and lead to the creation of new semiconductor technologies including
analog quantum simulators and universal solid-state quantum computers. In this
work, we report precise and repeatable, substitutional incorporation of single
arsenic atoms into a silicon lattice. We employ a combination of scanning
tunnelling microscopy hydrogen resist lithography and a detailed statistical
exploration of the chemistry of arsine on the hydrogen terminated silicon (001)
surface, to show that single arsenic dopants can be deterministically placed
within four silicon lattice sites and incorporated with 972% yield. These
findings bring us closer to the ultimate frontier in semiconductor technology:
the deterministic assembly of atomically precise dopant and qubit arrays at
arbitrarily large scales
DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton
Dimethylsulfoniopropionate (DMSP) is a globally important organosulfur molecule and the major precursor for dimethyl sulfide. These compounds are important info-chemicals, key nutrients for marine microorganisms, and are involved in global sulfur cycling, atmospheric chemistry and cloud formation1,2,3. DMSP production was thought to be confined to eukaryotes, but heterotrophic bacteria can also produce DMSP through the pathway used by most phytoplankton4, and the DsyB enzyme catalysing the key step of this pathway in bacteria was recently identified5. However, eukaryotic phytoplankton probably produce most of Earth’s DMSP, yet no DMSP biosynthesis genes have been identified in any such organisms. Here we identify functional dsyB homologues, termed DSYB, in many phytoplankton and corals. DSYB is a methylthiohydroxybutryate methyltransferase enzyme localized in the chloroplasts and mitochondria of the haptophyte Prymnesium parvum, and stable isotope tracking experiments support these organelles as sites of DMSP synthesis. DSYB transcription levels increased with DMSP concentrations in different phytoplankton and were indicative of intracellular DMSP. Identification of the eukaryotic DSYB sequences, along with bacterial dsyB, provides the first molecular tools to predict the relative contributions of eukaryotes and prokaryotes to global DMSP production. Furthermore, evolutionary analysis suggests that eukaryotic DSYB originated in bacteria and was passed to eukaryotes early in their evolution
Resistless EUV lithography: Photon-induced oxide patterning on silicon
In this work, we show the feasibility of extreme ultraviolet (EUV) patterning on an HF-treated silicon (100) surface in the absence of a photoresist. EUV lithography is the leading lithography technique in semiconductor manufacturing due to its high resolution and throughput, but future progress in resolution can be hampered because of the inherent limitations of the resists. We show that EUV photons can induce surface reactions on a partially hydrogen-terminated silicon surface and assist the growth of an oxide layer, which serves as an etch mask. This mechanism is different from the hydrogen desorption in scanning tunneling microscopy–based lithography. We achieve silicon dioxide/silicon gratings with 75-nanometer half-pitch and 31-nanometer height, demonstrating the efficacy of the method and the feasibility of patterning with EUV lithography without the use of a photoresist. Further development of the resistless EUV lithography method can be a viable approach to nanometer-scale lithography by overcoming the inherent resolution and roughness limitations of photoresist materials
Magnetic Anisotropy of Single Mn Acceptors in GaAs in an External Magnetic Field
We investigate the effect of an external magnetic field on the physical
properties of the acceptor hole states associated with single Mn acceptors
placed near the (110) surface of GaAs. Crosssectional scanning tunneling
microscopy images of the acceptor local density of states (LDOS) show that the
strongly anisotropic hole wavefunction is not significantly affected by a
magnetic field up to 6 T. These experimental results are supported by
theoretical calculations based on a tightbinding model of Mn acceptors in GaAs.
For Mn acceptors on the (110) surface and the subsurfaces immediately
underneath, we find that an applied magnetic field modifies significantly the
magnetic anisotropy landscape. However the acceptor hole wavefunction is
strongly localized around the Mn and the LDOS is quite independent of the
direction of the Mn magnetic moment. On the other hand, for Mn acceptors placed
on deeper layers below the surface, the acceptor hole wavefunction is more
delocalized and the corresponding LDOS is much more sensitive on the direction
of the Mn magnetic moment. However the magnetic anisotropy energy for these
magnetic impurities is large (up to 15 meV), and a magnetic field of 10 T can
hardly change the landscape and rotate the direction of the Mn magnetic moment
away from its easy axis. We predict that substantially larger magnetic fields
are required to observe a significant field-dependence of the tunneling current
for impurities located several layers below the GaAs surface.Comment: Non
Recommended from our members
Atomic-Scale Patterning of Arsenic in Silicon by Scanning Tunneling Microscopy
Over the past two decades, prototype devices for future classical and quantum computing technologies have been fabricated by using scanning tunneling microscopy and hydrogen resist lithography to position phosphorus atoms in silicon with atomic-scale precision. Despite these successes, phosphine remains the only donor precursor molecule to have been demonstrated as compatible with the hydrogen resist lithography technique. The potential benefits of atomic-scale placement of alternative dopant species have, until now, remained unexplored. In this work, we demonstrate the successful fabrication of atomic-scale structures of arsenic-in-silicon. Using a scanning tunneling microscope tip, we pattern a monolayer hydrogen mask to selectively place arsenic atoms on the Si(001) surface using arsine as the precursor molecule. We fully elucidate the surface chemistry and reaction pathways of arsine on Si(001), revealing significant differences to phosphine. We explain how these differences result in enhanced surface immobilization and in-plane confinement of arsenic compared to phosphorus, and a dose-rate independent arsenic saturation density of 0.24 ± 0.04 monolayers. We demonstrate the successful encapsulation of arsenic delta-layers using silicon molecular beam epitaxy, and find electrical characteristics that are competitive with equivalent structures fabricated with phosphorus. Arsenic delta-layers are also found to offer confinement as good as similarly prepared phosphorus layers, while still retaining >80% carrier activation and sheet resistances of <2 kω/square. These excellent characteristics of arsenic represent opportunities to enhance existing capabilities of atomic-scale fabrication of dopant structures in silicon, and may be important for three-dimensional devices, where vertical control of the position of device components is critical. Copyright © 2020 American Chemical Society
Non‐Destructive X‐Ray Imaging of Patterned Delta‐Layer Devices in Silicon
The progress of miniaturization in integrated electronics has led to atomic and nanometer-sized dopant devices in silicon. Such structures can be fabricated routinely by hydrogen resist lithography, using various dopants such as P and As. However, the ability to non-destructively obtain atomic-species-specific images of the final structure, which would be an indispensable tool for building more complex nano-scale devices, such as quantum co-processors, remains an unresolved challenge. Here, X-ray fluorescence is exploited to create an element-specific image of As dopants in Si, with dopant densities in absolute units and a resolution limited by the beam focal size (here ≈1 µm), without affecting the device's low temperature electronic properties. The As densities provided by the X-ray data are compared to those derived from Hall effect measurements as well as the standard non-repeatable, scanning tunneling microscopy and secondary ion mass spectroscopy, techniques. Before and after the X-ray experiments, we also measured the magneto-conductance, which is dominated by weak localization, a quantum interference effect extremely sensitive to sample dimensions and disorder. Notwithstanding the 1.5 × 10^{10} Sv (1.5 × 10^{16} Rad cm^{−2}) exposure of the device to X-rays, all transport data are unchanged to within experimental errors, corresponding to upper bounds of 0.2 Angstroms for the radiation-induced motion of the typical As atom and 3% for the loss of activated, carrier-contributing dopants. With next generation synchrotron radiation sources and more advanced optics, the authors foresee that it will be possible to obtain X-ray images of single dopant atoms within resolved radii of 5 nm
Towards the fabrication of phosphorus qubits for a silicon quantum computer
The quest to build a quantum computer has been inspired by the recognition of
the formidable computational power such a device could offer. In particular
silicon-based proposals, using the nuclear or electron spin of dopants as
qubits, are attractive due to the long spin relaxation times involved, their
scalability, and the ease of integration with existing silicon technology.
Fabrication of such devices however requires atomic scale manipulation - an
immense technological challenge. We demonstrate that it is possible to
fabricate an atomically-precise linear array of single phosphorus bearing
molecules on a silicon surface with the required dimensions for the fabrication
of a silicon-based quantum computer. We also discuss strategies for the
encapsulation of these phosphorus atoms by subsequent silicon crystal growth.Comment: To Appear in Phys. Rev. B Rapid Comm. 5 pages, 5 color figure
- …