17 research outputs found
Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination
Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000–11,650 yrs ago) allows us to disentangle ice-climate feedbacks that are key to improving future projections. Whilst the sequence of events during this period is reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records, making it difficult to assess relationships between Antarctic ice-sheet (AIS) dynamics, climate change and sea level. Here we present results from a highly-resolved ‘horizontal ice core’ from the Weddell Sea Embayment, which records millennial-scale AIS dynamics across this extensive region. Counterintuitively, we find AIS mass-loss across the full duration of the Antarctic Cold Reversal (ACR; 14,600–12,700 yrs ago), with stabilisation during the subsequent millennia of atmospheric warming. Earth-system and ice-sheet modelling suggests these contrasting trends were likely Antarctic-wide, sustained by feedbacks amplified by the delivery of Circumpolar Deep Water onto the continental shelf. Given the anti-phase relationship between inter-hemispheric climate trends across the LGT our findings demonstrate that Southern Ocean-AIS feedbacks were controlled by global atmospheric teleconnections. With increasing stratification of the Southern Ocean and intensification of mid-latitude westerly winds today, such teleconnections could amplify AIS mass loss and accelerate global sea-level rise
Improved estimates of preindustrial biomass burning reduce the magnitude of aerosol climate forcing in the Southern Hemisphere.
Fire plays a pivotal role in shaping terrestrial ecosystems and the chemical composition of the atmosphere and thus influences Earth’s climate. The trend and magnitude of fire activity over the past few centuries are controversial, which hinders understanding of preindustrial to present-day aerosol radiative forcing. Here, we present evidence from records of 14 Antarctic ice cores and 1 central Andean ice core, suggesting that historical fire activity in the Southern Hemisphere (SH) exceeded present-day levels. To understand this observation, we use a global fire model to show that overall SH fire emissions could have declined by 30% over the 20th century, possibly because of the rapid expansion of land use for agriculture and animal production in middle to high latitudes. Radiative forcing calculations suggest that the decreasing trend in SH fire emissions over the past century largely compensates for the cooling effect of increasing aerosols from fossil fuel and biofuel sources
El Niño Southern Oscillation signal in a new East Antarctic ice core, Mount Brown South
Abstract. Paleoclimate archives, such as high-resolution ice core records, provide a means to investigate long-term (multi-centennial) climate variability. Until recently, the Law Dome (Dome Summit South) ice core record remained one of few long-term high-resolution records in East Antarctica. A new ice core drilled in 2017/2018 at Mount Brown South, approximately 1000 km west of Law Dome, provides an additional high-resolution record that will likely span the last millennium in the Indian Ocean sector of East Antarctica. Here, we compare snowfall accumulation rates and sea salt concentrations in the upper portion (~21 m) of the Mount Brown South record, and an updated Law Dome record over the period 1975–2016. Annual sea salt concentrations from the Mount Brown South record preserves a stronger signal for the El Niño-Southern Oscillation (ENSO; in austral winter and spring, r = 0.521, p r = −0.387, p = 0.018, Niño 3.4). The Mount Brown South and Law Dome ice cores record inverse signals for the ENSO, suggesting the occurrence of distinct moisture and aerosol intrusions. We suggest that ENSO-related sea surface temperature anomalies in the equatorial Pacific drive atmospheric teleconnections in the southern mid-latitudes. These anomalies are associated with a weakening (strengthening) of regional westerly winds to the north of Mount Brown South that corresponds to years of low (high) sea salt deposition at Mount Brown South during La Niña (El Niño) events. The Mount Brown South annual sea salt record when complete will offer a new proxy record for reconstructions of the ENSO over the recent millennium, along with improved understanding of regional atmospheric variability in the southern Indian Ocean in addition to that derived from Law Dome
A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month
47 pages, 13 figures, 7 tablesA database of 15,617 point measurements of dimethylsulfide (DMS) in surface waters along with lesser amounts of data for aqueous and particulate dimethylsulfoniopropionate concentration, chlorophyll concentration, sea surface salinity and temperature, and wind speed has been assembled. The database was processed to create a series of climatological annual and monthly 1°x1°latitude-longitude squares of data. The results were compared to published fields of geophysical and biological parameters. No significant correlation was found between DMS and these parameters, and no simple algorithm could be found to create monthly fields of sea surface DMS concentration based on these parameters. Instead, an annual map of sea surface DMS was produced using an algorithm similar to that employed by Conkright et al. [1994]. In this approach, a first-guess field of DMS sea surface concentration measurements is created and then a correction to this field is generated based on actual measurements. Monthly sea surface grids of DMS were obtained using a similar scheme, but the sparsity of DMS measurements made the method difficult to implement. A scheme was used which projected actual data into months of the year where no data were otherwise presen
Data descriptor: a global multiproxy database for temperature reconstructions of the Common Era
Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python. (TABLE) Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013'). This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product. This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike
The Carrington event not observed in most ice core nitrate records
The Carrington Event of 1859 is considered to be
among the largest space weather events of the last 150 years. We show that only one out of 14 well-resolved ice core records from Greenland and Antarctica has a nitrate spike dated to 1859. No sharp spikes are observed in the Antarctic cores studied here. In Greenland numerous spikes are observed in the 40 years surrounding 1859, but where other chemistry was measured, all large spikes have the unequivocal signal, including co-located spikes in ammonium, formate, black carbon and vanillic acid, of biomass burning plumes. It seems certain that most spikes in an earlier core, including that claimed for 1859, are also due to biomass burning plumes, and not to solar energetic particle (SEP) events. We conclude that an event as large as the Carrington Event did not leave an observable, widespread imprint in nitrate in polar
ice. Nitrate spikes cannot be used to derive the statistics of SEPs
The preservation of methanesulphonic acid in frozen ice-core samples
Ice-core records of methanesulphonic acid (MSA) provide a potentially powerful tool for producing proxy records of sea ice, a critical but poorly understood component of the Earth's climate system. However, MSA is able to diffuse through solid ice, and here we examine the effect of two different methods of frozen storage on the preservation of MSA in archived ice-core samples. Re-analysis of archived ice sticks confirms that MSA diffuses out of ice cores archived in this manner. Despite MSA losses of up to 39% after 7 years storage, the ice sticks studied here preserve much of the variability of the original MSA record, suggesting that useful proxy records can be obtained from archived ice sticks. Furthermore, re-analysis of ice-core samples that had been refrozen into discrete bottled samples for storage demonstrates that it is possible to archive ice samples in a way that prevents MSA loss. In this case, accurate records of MSA variability and concentration were preserved even over storage periods of 15 years. This has important implications for the storage of ice cores and subsequent determination of MSA, and demonstrates that ice storage history needs to be considered when interpreting MSA records
Isotopic and elemental relics of the 1815 AD Tambora eruption in ice from Law Dome, Antarctica
Lead isotopes and Pb, Ba and Bi concentrations have been recently measured at sub-annual resolution in an ice
core section from Law Dome, Antarctica, corresponding to the period 1814-1819 AD and containing a SOsignal
attributed to the 1815Â AD eruption of Tambora volcano in Indonesia. While increasing concentrations of Pb and Bi
coincide with the 1817-1818Â AD volcanic SO peak, Pb isotope data do not confirm Tambora as the source. Barium
concentrations were elevated from 1816.5 to 1818.5Â AD, indicating increased atmospheric dust levels. These findings
contribute to the growing body of data indicating that effusive, rather than explosive, volcanism is the most important
volcanic emission process determining the flux of volcanogenic heavy metals to the polar ice sheets