27 research outputs found

    Molecular Interactions of the Min Protein System Reproduce Spatiotemporal Patterning in Growing and Dividing Escherichia coli Cells

    Full text link
    © 2015 Walsh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Oscillations of the Min protein system are involved in the correct midcell placement of the divisome during Escherichia coli cell division. Based on molecular interactions of the Min system, we formulated a mathematical model that reproduces Min patterning during cell growth and division. Specifically, the increase in the residence time of MinD attached to the membrane as its own concentration increases, is accounted for by dimerisation of membrane- bound MinD and its interaction with MinE. Simulation of this system generates unparalleled correlation between the waveshape of experimental and theoretical MinD distributions, suggesting that the dominant interactions of the physical system have been successfully incorporated into the model. For cells where MinD is fully-labelled with GFP, the model reproduces the stationary localization of MinD-GFP for short cells, followed by oscillations from pole to pole in larger cells, and the transition to the symmetric distribution during cell filamentation. Cells containing a secondary, GFP-labelled MinD display a contrasting pattern. The model is able to account for these differences, including temporary midcell localization just prior to division, by increasing the rate constant controlling MinD ATPase and heterotetramer dissociation. For both experimental conditions, the model can explain how cell division results in an equal distribution of MinD and MinE in the two daughter cells, and accounts for the temperature dependence of the period of Min oscillations. Thus, we show that while other interactions may be present, they are not needed to reproduce the main characteristics of the Min system in vivo

    Non-linear Min protein interactions generate harmonics that signal mid-cell division in Escherichia coli

    Full text link
    © 2017 Walsh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The Min protein system creates a dynamic spatial pattern in Escherichia coli cells where the proteins MinD and MinE oscillate from pole to pole. MinD positions MinC, an inhibitor of FtsZ ring formation, contributing to the mid-cell localization of cell division. In this paper, Fourier analysis is used to decompose experimental and model MinD spatial distributions into time-dependent harmonic components. In both experiment and model, the second harmonic component is responsible for producing a mid-cell minimum in MinD concentration. The features of this harmonic are robust in both experiment and model. Fourier analysis reveals a close correspondence between the time-dependent behaviour of the harmonic components in the experimental data and model. Given this, each molecular species in the model was analysed individually. This analysis revealed that membrane-bound MinD dimer shows the mid-cell minimum with the highest contrast when averaged over time, carrying the strongest signal for positioning the cell division ring. This concurs with previous data showing that the MinD dimer binds to MinC inhibiting FtsZ ring formation. These results show that non-linear interactions of Min proteins are essential for producing the mid-cell positioning signal via the generation of second-order harmonic components in the time-dependent spatial protein distribution

    Patterning of the MinD cell division protein in cells of arbitrary shape can be predicted using a heuristic dispersion relation

    Full text link
    © 2016, Paul M. G. Curmi, et al. Many important cellular processes require the accurate positioning of subcellular structures. Underpinning many of these are protein systems that spontaneously generate spatiotemporal patterns. In some cases, these systems can be described by non-linear reaction-diffusion equations, however, a full description of such equations is rarely available. A well-studied patterning system is the Min protein system that underpins the positioning of the FtsZ contractile ring during cell division in Escherichia coli. Using a coordinate-free linear stability analysis, the reaction terms can be separated from the geometry of a cell. The reaction terms produce a dispersion relation that can be used to predict patterning on any cell shape and size. Applying linear stability analysis to an accurate mathematical model of the Min system shows that while it correctly predicts the onset of patterning, the dispersion relation fails to predict oscillations and quantitative mode transitions. However, we show that data from full solutions of the Min model can be used to generate a heuristic dispersion relation. We show that this heuristic dispersion relation can be used to approximate the Min protein patterning obtained by full simulations of the non-linear reaction-diffusion equations. Moreover, it also predicts Min patterning obtained from experiments where the shapes of E. coli cells have been deformed into rectangles or arbitrary shapes. Using this procedure, it should be possible to generate heuristic dispersion relations from protein patterning data or simulations for any patterning process and subsequently use these to predict patterning for arbitrary cell shapes

    Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Investigating acetamidase gene function

    Full text link
    © 2016 The Author(s). No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (∼10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms

    Regulation of the Membrane Insertion and Conductance Activity of the Metamorphic Chloride Intracellular Channel Protein CLIC1 by Cholesterol

    Get PDF
    The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer. © 2013 Valenzuela et al

    Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle

    Full text link
    Inspired by biology, great progress has been made in creating artificial molecular motors. However, the dream of harnessing proteins – the building blocks selected by nature – to design autonomous motors has so far remained elusive. Here we report the synthesis and characterization of the Lawnmower, an autonomous, protein-based artificial molecular motor comprised of a spherical hub decorated with proteases. Its “burnt-bridge” motion is directed by cleavage of a peptide lawn, promoting motion towards unvisited substrate. We find that Lawnmowers exhibit directional motion with average speeds of up to 80 nm/s, comparable to biological motors. By selectively patterning the peptide lawn on microfabricated tracks, we furthermore show that the Lawnmower is capable of track-guided motion. Our work opens an avenue towards nanotechnology applications of artificial protein motors

    CLIC1 regulates dendritic cell antigen processing and presentation by modulating phagosome acidification and proteolysis

    Full text link
    © 2016, Company of Biologists Ltd. All rights reserved. Intracellular chloride channel protein 1 (CLIC1) participates in inflammatory processes by regulating macrophage phagosomal functions such as pH and proteolysis. Here, we sought to determine if CLIC1 can regulate adaptive immunity by actions on dendritic cells (DCs), the key professional antigen presenting cells. To do this, we first generated bone marrow-derived DCs (BMDCs) from germline CLIC1 gene-deleted (CLIC1-/-) and wild-type (CLIC1+/+) mice, then studied them in vitro and in vivo. We found phagocytosis triggered cytoplasmic CLIC1 translocation to the phagosomal membrane where it regulated phagosomal pH and proteolysis. Phagosomes from CLIC1-/- BMDCs displayed impaired acidification and proteolysis, which could be reproduced if CLIC1+/+, but not CLIC1-/- cells, were treated with IAA94, a CLIC family ion channel blocker. CLIC1-/- BMDC displayed reduced in vitro antigen processing and presentation of full-length myelin oligodendrocyte glycoprotein (MOG) and reduced MOG-induced experimental autoimmune encephalomyelitis. These data suggest that CLIC1 regulates DC phagosomal pH to ensure optimal processing of antigen for presentation to antigen-specific T-cells. Further, they indicate that CLIC1 is a novel therapeutic target to help reduce the adaptive immune response in autoimmune diseases

    An Oscillating MinD Protein Determines the Cellular Positioning of the Motility Machinery in Archaea.

    Full text link
    MinD proteins are well studied in rod-shaped bacteria such as E. coli, where they display self-organized pole-to-pole oscillations that are important for correct positioning of the Z-ring at mid-cell for cell division. Archaea also encode proteins belonging to the MinD family, but their functions are unknown. MinD homologous proteins were found to be widespread in Euryarchaeota and form a sister group to the bacterial MinD family, distinct from the ParA and other related ATPase families. We aimed to identify the function of four archaeal MinD proteins in the model archaeon Haloferax volcanii. Deletion of the minD genes did not cause cell division or size defects, and the Z-ring was still correctly positioned. Instead, one of the deletions (ΔminD4) reduced swimming motility and hampered the correct formation of motility machinery at the cell poles. In ΔminD4 cells, there is reduced formation of the motility structure and chemosensory arrays, which are essential for signal transduction. In bacteria, several members of the ParA family can position the motility structure and chemosensory arrays via binding to a landmark protein, and consequently these proteins do not oscillate along the cell axis. However, GFP-MinD4 displayed pole-to-pole oscillation and formed polar patches or foci in H. volcanii. The MinD4 membrane-targeting sequence (MTS), homologous to the bacterial MinD MTS, was essential for the oscillation. Surprisingly, mutant MinD4 proteins failed to form polar patches. Thus, MinD4 from H. volcanii combines traits of different bacterial ParA/MinD proteins

    Members of the chloride intracellular ion channel protein family demonstrate glutaredoxin-like enzymatic activity

    Full text link
    © 2015 Al Khamici et al. The Chloride Intracellular Ion Channel (CLIC) family consists of six evolutionarily conserved proteins in humans. Members of this family are unusual, existing as both monomeric soluble proteins and as integral membrane proteins where they function as chloride selective ion channels, however no function has previously been assigned to their soluble form. Structural studies have shown that in the soluble form, CLIC proteins adopt a glutathione S-transferase (GST) fold, however, they have an active site with a conserved glutaredoxin monothiol motif, similar to the omega class GSTs. We demonstrate that CLIC proteins have glutaredoxin-like glutathione-dependent oxidoreductase enzymatic activity. CLICs 1, 2 and 4 demonstrate typical glutaredoxin-like activity using 2-hydroxyethyl disulfide as a substrate. Mutagenesis experiments identify cysteine 24 as the catalytic cysteine residue in CLIC1, which is consistent with its structure. CLIC1 was shown to reduce sodium selenite and dehydroascorbate in a glutathione-dependent manner. Previous electrophysiological studies have shown that the drugs IAA-94 and A9C specifically block CLIC channel activity. These same compounds inhibit CLIC1 oxidoreductase activity. This work for the first time assigns a functional activity to the soluble form of the CLIC proteins. Our results demonstrate that the soluble form of the CLIC proteins has an enzymatic activity that is distinct from the channel activity of their integral membrane form. This CLIC enzymatic activity may be important for protecting the intracellular environment against oxidation. It is also likely that this enzymatic activity regulates the CLIC ion channel function

    Division plane placement in pleomorphic archaea is dynamically coupled to cell shape

    Full text link
    © 2019 John Wiley & Sons Ltd One mechanism for achieving accurate placement of the cell division machinery is via Turing patterns, where nonlinear molecular interactions spontaneously produce spatiotemporal concentration gradients. The resulting patterns are dictated by cell shape. For example, the Min system of Escherichia coli shows spatiotemporal oscillation between cell poles, leaving a mid-cell zone for division. The universality of pattern-forming mechanisms in divisome placement is currently unclear. We examined the location of the division plane in two pleomorphic archaea, Haloferax volcanii and Haloarcula japonica, and showed that it correlates with the predictions of Turing patterning. Time-lapse analysis of H. volcanii shows that divisome locations after successive rounds of division are dynamically determined by daughter cell shape. For H. volcanii, we show that the location of DNA does not influence division plane location, ruling out nucleoid occlusion. Triangular cells provide a stringent test for Turing patterning, where there is a bifurcation in division plane orientation. For the two archaea examined, most triangular cells divide as predicted by a Turing mechanism; however, in some cases multiple division planes are observed resulting in cells dividing into three viable progeny. Our results suggest that the division site placement is consistent with a Turing patterning system in these archaea
    corecore