48 research outputs found
Child and adolescent psychiatric patients and later criminality
<p>Abstract</p> <p>Background</p> <p>Sweden has an extensive child and adolescent psychiatric (CAP) research tradition in which longitudinal methods are used to study juvenile delinquency. Up to the 1980s, results from descriptions and follow-ups of cohorts of CAP patients showed that children's behavioural disturbances or disorders and school problems, together with dysfunctional family situations, were the main reasons for families, children, and youth to seek help from CAP units. Such factors were also related to registered criminality and registered alcohol and drug abuse in former CAP patients as adults. This study investigated the risk for patients treated 1975–1990 to be registered as criminals until the end of 2003.</p> <p>Methods</p> <p>A regional sample of 1,400 former CAP patients, whose treatment occurred between 1975 and 1990, was followed to 2003, using database-record links to the Register of Persons Convicted of Offences at the National Council for Crime Prevention (NCCP).</p> <p>Results</p> <p>Every third CAP patient treated between 1975 and 1990 (every second man and every fifth woman) had entered the Register of Persons Convicted of Offences during the observation period, which is a significantly higher rate than the general population.</p> <p>Conclusion</p> <p>Results were compared to published results for CAP patients who were treated between 1953 and 1955 and followed over 20 years. Compared to the group of CAP patients from the 1950s, the results indicate that the risk for boys to enter the register for criminality has doubled and for girls, the risk seems to have increased sevenfold. The reasons for this change are discussed. Although hypothetical and perhaps speculative this higher risk of later criminality may be the result of lack of social control due to (1) rising consumption of alcohol, (2) changes in organisation of child social welfare work, (3) the school system, and (4) CAP methods that were implemented since 1970.</p
Nitazoxanide Stimulates Autophagy and Inhibits mTORC1 Signaling and Intracellular Proliferation of Mycobacterium tuberculosis
Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment
Variability and Action Mechanism of a Family of Anticomplement Proteins in Ixodes ricinus
Background: Ticks are blood feeding arachnids that characteristically take a long blood meal. They must therefore counteract host defence mechanisms such as hemostasis, inflammation and the immune response. This is achieved by expressing batteries of salivary proteins coded by multigene families. Methodology/Principal Findings: We report the in-depth analysis of a tick multigene family and describe five new anticomplement proteins in ixodes ricinus. Compared to previously described Ixodes anticomplement proteins, these segregated into a new phylogenetic group or subfamily. These proteins have a novel action mechanism as they specifically bind to properdin, leading to the inhibition of C3 convertase and the alternative complement pathway. An excess of non-synonymous over synonymous changes indicated that coding sequences had undergone diversifying selection. Diversification was not associated with structural, biochemical o, functional diversity, adaptation to host species or stage specificity but rather to differences in antigenicity. Conclusion/Significance: Anticomplement proteins from I. ricinus are the first inhibitors that specifically target a positive regulator of complement, properdin. They may provide new tools for the investigation of role of properdin in physiological and pathophysiological mechanisms. They may also be useful in disorders affecting the alternative complement pathway, Looking for and detecting the different selection pressures involved will help in understanding the evolution of multigene families and hematophagy in arthropods. © 2008 Couveur et al.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling
BackgroundMammalian target of rapamycin complex 1 (mTORC1) is a protein kinase that relays nutrient availability signals to control numerous cellular functions including autophagy, a process of cellular self-eating activated by nutrient depletion. Addressing the therapeutic potential of modulating mTORC1 signaling and autophagy in human disease requires active chemicals with pharmacologically desirable properties.Methodology/Principal FindingsUsing an automated cell-based assay, we screened a collection of >3,500 chemicals and identified three approved drugs (perhexiline, niclosamide, amiodarone) and one pharmacological reagent (rottlerin) capable of rapidly increasing autophagosome content. Biochemical assays showed that the four compounds stimulate autophagy and inhibit mTORC1 signaling in cells maintained in nutrient-rich conditions. The compounds did not inhibit mTORC2, which also contains mTOR as a catalytic subunit, suggesting that they do not inhibit mTOR catalytic activity but rather inhibit signaling to mTORC1. mTORC1 inhibition and autophagosome accumulation induced by perhexiline, niclosamide or rottlerin were rapidly reversed upon drug withdrawal whereas amiodarone inhibited mTORC1 essentially irreversibly. TSC2, a negative regulator of mTORC1, was required for inhibition of mTORC1 signaling by rottlerin but not for mTORC1 inhibition by perhexiline, niclosamide and amiodarone. Transient exposure of immortalized mouse embryo fibroblasts to these drugs was not toxic in nutrient-rich conditions but led to rapid cell death by apoptosis in starvation conditions, by a mechanism determined in large part by the tuberous sclerosis complex protein TSC2, an upstream regulator of mTORC1. By contrast, transient exposure to the mTORC1 inhibitor rapamycin caused essentially irreversible mTORC1 inhibition, sustained inhibition of cell growth and no selective cell killing in starvation.Conclusion/SignificanceThe observation that drugs already approved for human use can reversibly inhibit mTORC1 and stimulate autophagy should greatly facilitate the preclinical and clinical testing of mTORC1 inhibition for indications such as tuberous sclerosis, diabetes, cardiovascular disease and cancer.<br/
High-throughput assay for G2 checkpoint inhibitors and identification of the structurally novel compound isogranulatimide
1. The journal Cancer Research is the original source of the material.2. This article is hosted on a website external to the CBCRA Open Access Archive. Selecting “View/Open” below will launch the full-text article in another browser window