35 research outputs found

    Current strategies for tracheal replacement: A review

    Get PDF
    Airway cancers have been increasing in recent years. Tracheal resection is commonly performed during surgery and is burdened from post-operative complications severely affecting quality of life. Tracheal resection is usually carried out in primary tracheal tumors or other neoplasms of the neck region. Regenerative medicine for tracheal replacement using bio-prosthesis is under current research. In recent years, attempts were made to replace and transplant human cadaver trachea. An effective vascular supply is fundamental for a successful tracheal transplantation. The use of biological scaffolds derived from decellularized tissues has the advantage of a three-dimensional structure based on the native extracellular matrix promoting the perfusion, vascularization, and differentiation of the seeded cell typologies. By appropriately modulating some experimental parameters, it is possible to change the characteristics of the surface. The obtained membranes could theoretically be affixed to a decellularized tissue, but, in practice, it needs to ensure adhesion to the biological substrate and/or glue adhesion with biocompatible glues. It is also known that many of the biocompatible glues can be toxic or poorly tolerated and induce inflammatory phenomena or rejection. In tissue and organ transplants, decellularized tissues must not produce adverse immunological reactions and lead to rejection phenomena; at the same time, the transplant tissue must retain the mechanical properties of the original tissue. This review describes the attempts so far developed and the current lines of research in the field of tracheal replacement

    Diagnosing silent cardiac dysautonomia via ambulatory blood pressure monitoring: early diagnosis shown by the lack of heart rate circadian rhythm in type 1 diabetes mellitus

    Get PDF
    Introduction. Diabetes mellitus (DM) can be complicated by an involvement of Neurovegetative System (NVS), conventionally and non-invasively diagnosed by the means of Ewing's test and Heart Rate Variability (HRV) analysis. It is well known that the NVS is physiologically responsible, via biological clocks, for the regulation of Circadian Rhythms (CR) characterizing the majority of biological functions. Therefore, this study is aimed at investigating the CR of Heart Rate (HR) and Blood Pressure (BP) in DM, postulating that the diagnosis of Silent Cardiac Dysautonomia (SCD) could be facilitated by detecting anomalous rhythmometric changes, including the worse one, i.e., the lose of a CR. Materials and Methods. The study has been performed on 30 clinically healthy subjects (CHS), 10 patients with DM1 and 30 patients with DM2, who underwent an ambulatory BP monitoring (ABPM) collecting data equidistantly every 30 minutes, under standardized conditions of lifestyle. The group specific monitored values of systolic (S), diastolic (D) BP, as well as HR have been analyzed via: 1. a conventional analysis of their intradiem variability; 2. a chronobiometric analysis (Cosinor method) of their CR. Results. The conventional analysis disclosed that in CHS, DM1 and DM2, both the HR and BP show an intradiem variability that is significant (p<0.001). The chronobiological analysis showed that in CHS and DM2, both the HR and BP show a significant CR (p<0.001), viceversa in DM1 HR is characterized by a non significant CR (p=0.124), notwithstanding that the SBP and DBP maintain a significant CR (p<0.001). Conclusions. The disappearance of HR CR in DM1 reveals the involvement of neurovegetative biological clock that selectively controls the HR CR, as it is demonstrated by the pathophysiological finding of an internal desynchronization between the HR and BP CR. The selective lose of HR CR in DM1 leads to conclude that the ABPM, along with its Cosinor analysis, might be a practical, repeatable, low cost, low risk technique for diagnosing the SCD, at least in DM1. Clin Ter 2010; 161(1):e1-e1

    Blood flow characteristics after aortic valve neocuspidization in paediatric patients: a comparison with the Ross procedure.

    Get PDF
    AIMS: The aortic valve (AV) neocuspidization (Ozaki procedure) is a novel surgical technique for AV disease that preserves the natural motion and cardiodynamics of the aortic root. In this study, we sought to evaluate, by 4D-flow magnetic resonance imaging, the aortic blood flow characteristics after AV neocuspidization in paediatric patients. METHODS AND RESULTS: Aortic root and ascending aorta haemodynamics were evaluated in a population of patients treated with the Ozaki procedure; results were compared with those of a group of patients operated with the Ross technique. Cardiovascular magnetic resonance studies were performed at 1.5 T using a 4D flow-sensitive sequence acquired with retrospective electrocardiogram-gating and respiratory navigator. Post-processing of 4D-flow analysis was performed to calculate flow eccentricity and wall shear stress. Twenty children were included in this study, 10 after Ozaki and 10 after Ross procedure. Median age at surgery was 10.7 years (range 3.9-16.5 years). No significant differences were observed in wall shear stress values measured at the level of the proximal ascending aorta between the two groups. The analysis of flow patterns showed no clear association between eccentric flow and the procedure performed. The Ozaki group showed just a slightly increased transvalvular maximum velocity. CONCLUSION: Proximal aorta flow dynamics of children treated with the Ozaki and the Ross procedure are comparable. Similarly to the Ross, Ozaki technique restores a physiological laminar flow pattern in the short-term follow-up, with the advantage of not inducing a bivalvular disease, although further studies are warranted to evaluate its long-term results

    Relapsing myocarditis following initial recovery of post COVID-19 vaccination in two adolescent males – Case reports

    Get PDF
    Whilst there has been significant public health benefits associated with global use of COVID-19 spike protein vaccines, potential serious adverse events following immunization have been reported. Acute myocarditis is a rare complication of COVID19 vaccines and often it is self-limiting. We describe two cases experiencing recurrent myocarditis following mRNA COVID-19 vaccine despite a prior episode with full clinical recovery. Between September 2021-September 2022 we observed two male adolescents with recurrent myocarditis related to mRNA-based-COVID19 vaccine. During the first episode both patients presented with fever and chest pain few days after their second dose of BNT162b2 mRNA Covid-19 Vaccine (Comirnaty & REG;). The blood exams showed increased cardiac enzymes. In addition, complete viral panel was run, showing HHV7 positivity in a single case. The left ventricular ejection fraction (LVEF) was normal at echocardiogram but cardiac magnetic resonance scanning (CMR) was consistent with myocarditis. They were treated with supportive treatment with full recovery. The 6 months follow-up demonstrated good clinical conditions with normal cardiological findings. The CMR showed persistent lesions in left ventricle 's wall with LGE. After some months the patients presented at emergency department with fever and chest pain and increased cardiac enzymes. No decreased LVEF was observed. The CMR showed new focal areas of edema in the first case report and stable lesions in the second one. They reached full recovery with normalization of cardiac enzymes after few days. These case reports outline the need of strict follow-up in patients with CMR consistent with myocarditis after mRNA-basedCOVID19 vaccine. More efforts are necessary to depict the underlying mechanisms of myocarditis after SARS-CoV2 vaccination to understand the risk of relapsing and the long-term sequelae. & COPY; 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Lipids, blood pressure and kidney update 2015

    Full text link
    corecore