634 research outputs found

    High-spin structures of 88Kr and 89Rb: Evolution from collective to single-particle behaviors

    Full text link
    The high-spin states of the two neutron-rich nuclei, 88Kr and 89R have been studied from the 18O + 208Pb fusion-fission reaction. Their level schemes were built from triple gamma-ray coincidence data and gamma-gamma angular correlations were analyzed in order to assign spin and parity values to most of the observed states. The two levels schemes evolve from collective structures to single-particle excitations as a function of the excitation energy. Comparison with results of shell-model calculations gives the specific proton and neutron configurations which are involved to generate the angular momentum along the yrast lines.Comment: 12 pages, 9 figures, Physical Review C (2013) in pres

    High-spin structures of 136Cs

    Get PDF
    Odd-odd 136Cs nuclei have been produced in the 18O + 208Pb and 12C + 238U fusion-fission reactions and their gamma rays studied with the Euroball array. The high-spin level scheme has been built up to ~ 4.7 MeV excitation energy and spin I ~ 16 hbar from the triple gamma-ray coincidence data. The configurations of the three structures observed above ~ 2 MeV excitation energy are first discussed by analogy with the proton excitations identified in the semi-magic 137Cs nucleus, which involve the three high-j orbits lying above the Z=50 gap, pi g_{7/2}, pi d_{5/2} and pi h_{11/2}. This is confirmed by the results of shell-model calculations performed in this work.Comment: 6 pages, 4 figures, 3 table

    Focusing in Asynchronous Games

    Get PDF
    Game semantics provides an interactive point of view on proofs, which enables one to describe precisely their dynamical behavior during cut elimination, by considering formulas as games on which proofs induce strategies. We are specifically interested here in relating two such semantics of linear logic, of very different flavor, which both take in account concurrent features of the proofs: asynchronous games and concurrent games. Interestingly, we show that associating a concurrent strategy to an asynchronous strategy can be seen as a semantical counterpart of the focusing property of linear logic

    High-spin states with seniority v=4,4,6 in 119-126Sn

    Full text link
    The 119-126Sn nuclei have been produced as fission fragments in two reactions induced by heavy ions: 12C+238U at 90 MeV bombarding energy, 18O+208Pb at 85 MeV. Their level schemes have been built from gamma rays detected using the Euroball array. High-spin states located above the long-lived isomeric states of the even- and odd-A 120-126Sn nuclei have been identified. Moreover isomeric states lying around 4.5 MeV have been established in 120,122,124,126Sn from the delayed coincidences between the fission fragment detector SAPhIR and the Euroball array. The states located above 3-MeV excitation energy are ascribed to several broken pairs of neutrons occupying the nu h11/2 orbit. The maximum value of angular momentum available in such a high-j shell, i.e. for mid-occupation and the breaking of the three neutron pairs, has been identified. This process is observed for the first time in spherical nuclei.Comment: 20 pages, 22 figures, 12 tables, accepted for publication in Physical Review

    Observation of the lowest energy gamma-ray in any superdeformed nucleus : 196Bi

    Full text link
    New results on the superdeformed 196^{196}Bi nucleus a re reported. We have observed with the EUROBALL IV γ\gamma-ray spectrometer array a superdeformed trans ition of 124 keV which is the lowest observed energy γ\gamma-ray in any superdeformed nucleus. We have de velopped microscopic cranked Hartree-Fock-Bogoliubov calculations using the SLy4 effective force and a realistic surface p airing which strongly support the Kπ=2K^\pi=2^-(π\pi[651]1/2ν\otimes \nu[752]5/2) assignment of this su perdeformed band

    Kripke Semantics for Martin-L\"of's Extensional Type Theory

    Full text link
    It is well-known that simple type theory is complete with respect to non-standard set-valued models. Completeness for standard models only holds with respect to certain extended classes of models, e.g., the class of cartesian closed categories. Similarly, dependent type theory is complete for locally cartesian closed categories. However, it is usually difficult to establish the coherence of interpretations of dependent type theory, i.e., to show that the interpretations of equal expressions are indeed equal. Several classes of models have been used to remedy this problem. We contribute to this investigation by giving a semantics that is standard, coherent, and sufficiently general for completeness while remaining relatively easy to compute with. Our models interpret types of Martin-L\"of's extensional dependent type theory as sets indexed over posets or, equivalently, as fibrations over posets. This semantics can be seen as a generalization to dependent type theory of the interpretation of intuitionistic first-order logic in Kripke models. This yields a simple coherent model theory, with respect to which simple and dependent type theory are sound and complete

    The duality of computation

    Get PDF
    http://www.acm.orgInternational audienceWe present the lambda-bar-mu-mu-tilde-calculus, a syntax for lambda-calculus + control operators exhibiting symmetries such as program/context and call-by-name/call-by-value. This calculus is derived from implicational Gentzen's sequent calculus LK, a key classical logical system in proof theory. Under the Curry-Howard correspondence between proofs and programs, we can see LK, or more precisely a formulation called LK-mu-mu-tilde, as a syntax-directed system of simple types for lambda-bar-mu-mu-tilde-calculus. For lambda-bar-mu-mu-tilde-calculus, choosing a call-by-name or call-by-value discipline for reduction amounts to choosing one of the two possible symmetric orientations of a critical pair. Our analysis leads us to revisit the question of what is a natural syntax for call-by-value functional computation. We define a translation of lambda-mu-calculus into lambda-bar-mu-mu-tilde-calculus and two dual translations back to lambda-calculus, and we recover known CPS translations by composing these translations

    Existential witness extraction in classical realizability and via a negative translation

    Full text link
    We show how to extract existential witnesses from classical proofs using Krivine's classical realizability---where classical proofs are interpreted as lambda-terms with the call/cc control operator. We first recall the basic framework of classical realizability (in classical second-order arithmetic) and show how to extend it with primitive numerals for faster computations. Then we show how to perform witness extraction in this framework, by discussing several techniques depending on the shape of the existential formula. In particular, we show that in the Sigma01-case, Krivine's witness extraction method reduces to Friedman's through a well-suited negative translation to intuitionistic second-order arithmetic. Finally we discuss the advantages of using call/cc rather than a negative translation, especially from the point of view of an implementation.Comment: 52 pages. Accepted in Logical Methods for Computer Science (LMCS), 201

    On Linear Information Systems

    Get PDF
    Scott's information systems provide a categorically equivalent, intensional description of Scott domains and continuous functions. Following a well established pattern in denotational semantics, we define a linear version of information systems, providing a model of intuitionistic linear logic (a new-Seely category), with a "set-theoretic" interpretation of exponentials that recovers Scott continuous functions via the co-Kleisli construction. From a domain theoretic point of view, linear information systems are equivalent to prime algebraic Scott domains, which in turn generalize prime algebraic lattices, already known to provide a model of classical linear logic

    Strong Deformation Effects in Hot Rotating 46Ti

    Get PDF
    Exotic-deformation effects in 46Ti nucleus were investigated by analysing the high-energy gamma-ray and the alpha-particle energy spectra. One of the experiments was performed using the charged-particle multi-detector array ICARE together with a large volume (4"x4") BGO detector. The study focused on simultaneous measurement of light charged particles and gamma-rays in coincidence with the evaporation residues. The experimental data show a signature of very large deformations of the compound nucleus in the Jacobi transition region at the highest spins. These results are compared to data from previous experiments performed with the HECTOR array coupled to the EUROBALL array, where it was found that the GDR strength function is highly fragmented, strongly indicating a presence of nuclei with very large deformation.Comment: 10 pages, 6 figures, Proceedings of the Zakopane Conference on Nuclear Physics, to be published in Acta Phys. Pol. B (2007
    corecore