125 research outputs found

    Unbounded randomness certification using sequences of measurements

    Get PDF
    Unpredictability, or randomness, of the outcomes of measurements made on an entangled state can be certified provided that the statistics violate a Bell inequality. In the standard Bell scenario where each party performs a single measurement on its share of the system, only a finite amount of randomness, of at most 4log2d4 log_2 d bits, can be certified from a pair of entangled particles of dimension dd. Our work shows that this fundamental limitation can be overcome using sequences of (nonprojective) measurements on the same system. More precisely, we prove that one can certify any amount of random bits from a pair of qubits in a pure state as the resource, even if it is arbitrarily weakly entangled. In addition, this certification is achieved by near-maximal violation of a particular Bell inequality for each measurement in the sequence.Comment: 4 + 5 pages (1 + 3 images), published versio

    On the Theoretical Determination of Photolysis Properties for Atmospheric Volatile Organic Compounds

    Get PDF
    Volatile organic compounds (VOC) are ubiquitous atmospheric molecules that generate a complex network of chemical reactions in the troposphere, often triggered by the absorption of sunlight. Understanding the VOC composition of the atmosphere relies on our ability to characterize all of their possible reaction pathways. When considering reactions of (transient) VOCs with sunlight, the availability of photolysis rate constants, utilized in general atmospheric models, is often out of experimental reach due to the unstable nature of these molecules. Here, we show how recent advances in computational photochemistry allow us to calculate \textit{in silico} the different ingredients of a photolysis rate constant, namely the photoabsorption cross-section and wavelength-dependent quantum yields. The rich photochemistry of tert-butyl hydroperoxide, for which experimental data is available, is employed to test our protocol and highlight the strengths and weaknesses of different levels of electronic structure and nonadiabatic molecular dynamics to study the photochemistry of (transient) VOCs

    Temporal variation of pesticide mixtures in rivers of three agricultural watersheds during a major drought in the Western Cape, South Africa

    Get PDF
    South Africa is the leading pesticide user in Sub-Saharan Africa. However, little is known about the occurrence of pesticide mixtures in surface water and potential environmental risks in Africa. This study investigated the occurrence of pesticides mixtures in three watersheds during a drought year in South Africa. The study was conducted in the Krom River, Berg River and Hex River watersheds within larger agriculture systems in the Western Cape. Pesticide spray records were collected from 38 farms. A total of 21 passive water samplers (styrenedivinylbenzene disks (SDB)) were deployed, each for two weeks per month, over seven sampling rounds during the main pesticide application period between July 2017 and January 2018. Samples were analyzed for 248 pesticide compounds using LC-HR-MS/MS. Pesticide occurrence was analyzed for temporal agreement with pesticide spraying events (Cohen's kappa) and correlation with rainfall patterns and river discharge (Pearson correlation (r p )). Pesticide time-weighted average concentrations were estimated and compared to environmental quality standards (EQS). According to the farm spray records, 96 different pesticides were sprayed during the sampling period and differed considerably between the three study areas, seasons and crops grown. In total, 53 compounds were detected in river water. We detected 39% of compounds from the spraying records and demonstrated close temporal correlations of seasonal patterns for 11 pesticide compounds between reported on spraying records and observations in the streams (kappa = 0.90). However, 23 detected pesticides were not found on spray records, many of them being herbicides. Most of the estimated two-week average pesticide concentrations were below 40 ng/L. The insecticides imidacloprid, thiacloprid, chlorpyrifos and acetamiprid and the herbicide terbuthylazine exceeded at least once their EQS 58-fold (EQS 13 ng/L), 12-fold (EQS 10 ng/L), 9-fold (EQS 0.46 ng/L), 5-fold (EQS 24 ng/L) and 3-fold (EQS 220 ng/L), respectively. Our study substantially widens the view on pesticide pollution in surface water compared to previous studies in Sub-Saharan Africa by targeting more than 200 pesticides using passive sampling systems. This broad assessment revealed the presence of 53 compounds, some of them in high concentrations, indicating possible adverse effects on biota and the quality of the ecosystem. Whether the observed concentration levels in the year 2017 were exceptional due to the lowest ever recorded rainfall and river discharge needs to be tested with additional data to better understand how pesticide pollution levels manifest under average rainfall and river discharge conditions

    Seasonal drivers and risks of aquatic pesticide pollution in drought and post-drought conditions in three Mediterranean watersheds

    Get PDF
    The Western Cape in South Africa has a Mediterranean climate, which has in part led to an abundance of agriculturally productive land supporting the wheat, deciduous fruit, wine, and citrus industries. South Africa is the leading pesticide user in Sub-Saharan Africa. There is limited data on the pesticide pollution of surface water over different seasons in low- and middle-income countries. We evaluated the seasonal drivers of aquatic pesticide pollution in three river catchments (Berg, Krom, and Hex Rivers) from July 2017 to June 2018 and April to July 2019, using 48 passive samplers. Our sampling followed the most severe drought (2015-2018) over the last century. Thus, our analyses focus on how drought and post-drought conditions may affect in-stream pesticide concentrations and loads. Samples were analyzed for 101 pesticide compounds using liquid chromatography - high-resolution mass spectrometry. Environmental Quality Standards (EQS) were used to assess the risks. We detected 60 pesticide compounds across the sampling periods. Our results indicate that all samples across all three catchments contained at least three pesticides and that the majority (83%) contained five or more pesticides. Approximately half the number of pesticides were detected after the drought in 2018. High concentration sums of pesticides (>1mug/L) were detected over long time periods in the Hex River Valley (22weeks) and in Piketberg (four weeks). Terbuthylazine, imidacloprid, and metsulfuron-methyl were detected in the highest concentrations, making up most of the detected mass, and were frequently above EQS. The occurrence of some pesticides in water generally correlated with their application and rainfall events. However, those of imidacloprid and terbuthylazine did not, suggesting that non-rainfall-driven transport processes are important drivers of aquatic pesticide pollution. The implementation of specific, scientific sound, mitigation measures against aquatic pesticide pollution would require comprehensive pesticide application data as well as a targeted study identifying sources and transport processes for environmentally persistent pesticides

    Synthesis of Organic Super-Electron-Donors by Reaction of Nitrous Oxide with N‐Heterocyclic Olefins

    Get PDF
    The reaction of nitrous oxide (N2O) with N-heterocyclic olefins (NHOs) results in cleavage of the N–O bond and formation of azo-bridged NHO dimers. The latter represent very electron-rich compounds with a low ionization energy. Cyclic voltammetry studies show that the dimers can be classified as new organic super-electron-donors, with a reducing power similar to what is found for tetraazafulvalene derivatives. Mild oxidants are able to convert the neutral dimers into radical cations, which can be isolated. Further oxidation gives stable dications

    Seasonal variations in air concentrations of 27 organochlorine pesticides (OCPs) and 25 current-use pesticides (CUPs) across three agricultural areas of South Africa

    Get PDF
    For decades pesticides have been used in agriculture, however, the occurrence of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) is poorly understood in Africa. This study investigates air concentrations of OCPs and CUPs in three South African agricultural areas, their spatial/seasonal variations and mixture profiles. Between 2017 and 2018, 54 polyurethane foam-disks passive air-samplers (PUF-PAS) were positioned in three agricultural areas of the Western Cape, producing mainly apples, table grapes and wheat. Within areas, 25 CUPs were measured at two sites (farm and village), and 27 OCPs at one site (farm). Kruskal-Wallis tests investigated area differences in OCPs concentrations, and linear mixed-effect models studied differences in CUPs concentrations between areas, sites and sampling rounds. In total, 20 OCPs and 16 CUPs were detected. A median of 16 OCPs and 10 CUPs were detected per sample, making a total of 11 OCPs and 24 CUPs combinations. Eight OCPs (trans-chlordane, o,p'-/p,p'-dichlorodiphenyldichloroethylene (DDE)/dichlorodiphenyltrichloroethane (DDT), endosulfan sulfate, Îł-hexachlorocyclohexane and mirex) and two CUPs (carbaryl and chlorpyrifos) were quantified in all samples. p,p'-DDE (median 0.14 ng/m(3)) and chlorpyrifos (median 0.70 ng/m(3)) showed the highest concentrations throughout the study. Several OCPs and CUPs showed different concentrations between areas and seasons, although CUPs concentrations did not differ between sites. OCPs ratios suggest ongoing chlordane use in the region, while DDT and endosulfan contamination result from past-use. Our study revealed spatial and seasonal variations of different OCPs and CUPs combinations detected in air. Further studies are needed to investigate the potential cumulative or synergistic risks of the detected pesticides

    Protein-tyrosine Phosphatase H1 Controls Growth Hormone Receptor Signaling and Systemic Growth

    Get PDF
    Several protein-tyrosine phosphatases (PTPs) have been implicated in the control of growth hormone receptor (GHR) signaling, but none have been shown to affect growth in vivo. We have applied a battery of molecular and cellular approaches to test a family-wide panel of PTPs for interference with GHR signaling. Among the subset of PTPs that showed activity in multiple readouts, we selected PTP-H1/PTPN3 for further in vivo studies and found that mice lacking the PTP-H1 catalytic domain show significantly enhanced growth over their wild type littermates. In addition, PTP-H1 mutant animals had enhanced plasma and liver mRNA expression of insulin-like growth factor 1, as well as increased bone density and mineral content. These observations point to a controlling role for PTP-H1 in modulating GHR signaling and systemic growth through insulin-like growth factor 1 secretion

    Unbounded randomness certification using sequences of measurements

    Get PDF
    Unpredictability, or randomness, of the outcomes of measurements made on an entangled state can be certified provided that the statistics violate a Bell inequality. In the standard Bell scenario where each party performs a single measurement on its share of the system, only a finite amount of randomness, of at most 4logd bits, can be certified from a pair of entangled particles of dimension d. Our work shows that this fundamental limitation can be overcome using sequences of (nonprojective) measurements on the same system. More precisely, we prove that one can certify any amount of random bits from a pair of qubits in a pure state as the resource, even if it is arbitrarily weakly entangled. In addition, this certification is achieved by near-maximal violation of a particular Bell inequality for each measurement in the sequence

    Multiple EC power deposition locations tracking by break-in-slope analysis in TCV plasmas

    Get PDF
    Modulation of the amplitude of externally injected electron cyclotron (EC) power is a frequent method used to determine the radial power deposition profile in fusion plasmas. There are many tools to analyze the plasma response to the power modulations under quasi-stationary conditions. This paper focuses on the unique ability of the break-in-slope (BIS) method to retrieve a quasi-instantaneous estimate of the power deposition profile at each power step in the modulation, an outcome particularly relevant to track the power deposition location under non-stationary conditions. Here, the BIS analysis method is applied to the signals of a fast and high radial resolution wire-chamber soft x-ray camera in the Tokamak a Configuration Variable (TCV) where the plasma magnetic configuration and thus the EC resonance location are varied during the plasma discharge. As a step to validate this technique before real-time control experiments, the time-varying EC power deposition location of a single beam is successfully monitored by off-line BIS analysis. Simultaneous tracking of deposition locations of two EC beams gives promising results
    • 

    corecore