7 research outputs found

    Fabrication of a hydrogenated amorphous silicon detector in 3-d geometry and preliminary test on planar prototypes

    Get PDF
    Hydrogenated amorphous silicon (a-Si:H) can be produced by plasma-enhanced chemical vapor deposition (PECVD) of SiH4 (silane) mixed with hydrogen. The resulting material shows outstanding radiation hardness properties and can be deposited on a wide variety of substrates. Devices employing a-Si:H technologies have been used to detect many different kinds of radiation, namely, minimum ionizing particles (MIPs), X-rays, neutrons, and ions, as well as low-energy protons and alphas. However, the detection of MIPs using planar a-Si:H diodes has proven difficult due to their unsatisfactory S/N ratio arising from a combination of high leakage current, high capacitance, and limited charge collection efficiency (50% at best for a 30 µm planar diode). To overcome these limitations, the 3D-SiAm collaboration proposes employing a 3D detector geometry. The use of vertical electrodes allows for a small collection distance to be maintained while preserving a large detector thickness for charge generation. The depletion voltage in this configuration can be kept below 400 V with a consequent reduction in the leakage current. In this paper, following a detailed description of the fabrication process, the results of the tests performed on the planar p-i-n structures made with ion implantation of the dopants and with carrier selective contacts are illustrated

    Testing of planar hydrogenated amorphous silicon sensors with charge selective contacts for the construction of 3D-detectors

    Get PDF
    Hydrogenated Amorphous Silicon (a-Si:H) is a well known material for its intrinsic radiation hardness and is primarily utilized in solar cells as well as for particle detection and dosimetry. Planar p-i-n diode detectors are fabricated entirely by means of intrinsic and doped PECVD of a mixture of Silane (SiH4) and molecular hydrogen. In order to develop 3D detector geometries using a-Si:H, two options for the junction fabrication have been considered: ion implantation and charge selective contacts through atomic layer deposition. In order to test the functionality of the charge selective contact electrodes, planar detectors have been fabricated utilizing this technique. In this paper, we provide a general overview of the 3D fabrication project followed by the results of leakage current measurements and X-ray dosimetric tests performed on planar diodes containing charge selective contacts to investigate the feasibility of the charge selective contact methodology for integration with the proposed 3D detector architectures

    Testing of planar hydrogenated amorphous silicon sensors with charge selective contacts for the construction of 3D-detectors

    No full text
    Hydrogenated Amorphous Silicon (a-Si:H) is a well known material for its intrinsic radiation hardness and is primarily utilized in solar cells as well as for particle detection and dosimetry. Planar p-i-n diode detectors are fabricated entirely by means of intrinsic and doped PECVD of a mixture of Silane (SiH4) and molecular hydrogen. In order to develop 3D detector geometries using a-Si:H, two options for the junction fabrication have been considered: ion implantation and charge selective contacts through atomic layer deposition. In order to test the functionality of the charge selective contact electrodes, planar detectors have been fabricated utilizing this technique. In this paper, we provide a general overview of the 3D fabrication project followed by the results of leakage current measurements and X-ray dosimetric tests performed on planar diodes containing charge selective contacts to investigate the feasibility of the charge selective contact methodology for integration with the proposed 3D detector architectures

    Neutron irradiation of Hydrogenated Amorphous Silicon p-i-n diodes and charge selective contacts detectors

    No full text
    Hydrogenated amorphous silicon is a well-known detector material for its radiation resistance. For this reason it has been used in particle beam flux measurements and in solar panels designed for space applications. This study concern 10 μm thickness, p-i-n and charge selective contacts planar diode detectors which were irradiated with neutrons to two fluence values: 1e16 neq/cm2 and 5e16 neq/cm2. In order to evaluate their radiation resistance, detector leakage current and response to x-ray photons have been measured. The effect of annealing for performance recovery at 100 C for 12 and 24 h has also been studied. The results for the 1e16 neq/cm2 irradiation show a factor 2 increase in leakage current that is completely recovered after annealing for p-i-n devices while charge selective contacts devices show an overall decrease of the leakage current at the end of the annealing process compared to the measurement before the irradiation. X-ray dosimetric sensitivity degrades, for this fluence, at the end of irradiation, but partially recovers for charge selective contact devices and increases for p-i-n devices at the end of the annealing process. Concerning the 5e16 neq/cm2 irradiation test (for p-i-n structures only), due to the activation that occurred during the irradiation phase, the measurements were taken after 146 days of storage at around 0 C, during this period, a self-annealing effect may have occurred. Therefore, the results after irradiation and storage show a noticeable degradation in leakage current and x-ray sensitivity with a small recovery after annealing

    Neutron irradiation of Hydrogenated Amorphous Silicon p-i-n diodes and charge selective contacts detectors

    No full text
    Hydrogenated amorphous silicon is a well-known detector material for its radiation resistance. For this reason it has been used in particle beam flux measurements and in solar panels designed for space applications. This study concern 10μm thickness, p-i-n and charge selective contacts planar diode detectors which were irradiated with neutrons to two fluence values: 1016 neq/cm2 and 5 × 1016 neq/cm2. In order to evaluate their radiation resistance, detector leakage current and response to x-ray photons have been measured. The effect of annealing for performance recovery at 100 °C for 12 and 24 h has also been studied. The results for the 1016 neq/cm2 irradiation show a factor 2 increase in leakage current that is completely recovered after annealing for p-i-n devices while charge selective contacts devices show an overall decrease of the leakage current at the end of the annealing process compared to the measurement before the irradiation. X-ray dosimetric sensitivity degrades, for this fluence, at the end of irradiation, but partially recovers for charge selective contact devices and increases for p-i-n devices at the end of the annealing process. Concerning the 5 × 1016 neq/cm2 irradiation test (for p-i-n structures only), due to the activation that occurred during the irradiation phase, the measurements were taken after 146 days of storage at around 0 °C, during this period, a self-annealing effect may have occurred. Therefore, the results after irradiation and storage show a noticeable degradation in leakage current and x-ray sensitivity with a small recovery after annealing
    corecore